News

Journal of the American College of Surgeons article highlights early research on blood clotting evaluation work that may help identify and treat dangerous complications of the infection Newswise — CHICAGO (May 15, 2020): When researchers from the University of Colorado Anschutz Medical Campus, Aurora, used a combination of two specific blood-clotting tests, they found critically ill patients infected with Coronavirus Disease 2019 (COVID-19) who were at high risk for developing renal failure, venous blood clots, and other complications associated with blood clots, such as stroke. Their study, which was one of the first to build on growing evidence that COVID-19-infected patients are highly predisposed to developing blood clots, linked blood clotting measurements with actual patient outcomes. The research team is now participating in a randomized clinical trial of a drug that breaks down blood clots in COVID-19-infected patients. “This is an early step on the road to discovering treatments to prevent some of the complications that come with this disease,” said Franklin Wright, MD, FACS, lead author of the research article and an assistant professor of surgery at the University of Colorado School of Medicine. Their research is published as an “article in press” on the Journal of the American College of Surgeons website ahead of print. Patients who are critically ill regardless of cause can develop a condition known as disseminated intravascular coagulation (DIC). The blood of these patients initially forms many clots in small blood vessels. The body’s natural clotting factors can form too much clot or eventually not be able to effectively form any clot leading to issues of both excessive clotting and excessive bleeding. However, in patients with COVID-19 the clotting appears to be particularly severe and—as evidenced by case studies in China and elsewhere*—clots in COVID-19 patients do not appear to dissipate, explained Dr. Wright. Trauma acute care surgeons and intensive care physicians who treat trauma, transplant, and cardiothoracic surgery patients at UCHealth University of Colorado Hospital saw the potential of using a specialized coagulation test to examine clotting issues in COVID-19 patients. Thromboelastography (TEG) is a whole blood assay that provides a broad picture of how an individual patient’s blood forms clots, including how long clotting takes, how strong clots are, and how soon clots break down. TEG is highly specialized and used primarily by surgeons and anesthesiologists to evaluate the efficiency of blood clotting; it is not widely used in other clinical settings. “The COVID pandemic is opening doors for multidisciplinary collaboration so trauma acute care surgeons and intensivists can bring the tools they use in their day-to-day lives and apply them in the critical care setting to new problems,” Dr. Wright said. The researchers evaluated outcomes for all patients who had a TEG assay as part of their treatment for COVID-19 infection as well as other conventional coagulation assays, including ones that measure D-dimer levels. D-dimer is a protein fragment that is produced when a blood clot dissolves. D-dimer levels are elevated when large numbers of clots are breaking down. A total of 44 patients treated for COVID-19 infection between March 22 and April 20 were included in the analysis. Those whose bodies were not breaking down clots most often required hemodialysis and had a higher rate of clots in the veins. These patients were identified by TEG assays showing no clot breakdown after 30 minutes and a D-dimer level greater than 2600 ng/mL. Eighty percent of patients with both affirmative test findings were placed on dialysis compared with 14 percent who tested for neither finding. Patients with affirmative test findings also had a 50 percent rate of venous blood clots compared with 0 percent for those patients with neither finding. “These study results suggest there may be a benefit to early TEG testing in institutions that have the technology to identify COVID-19 patients who may need more aggressive anticoagulation therapy to prevent complications from clot formation,” Dr. Wright said. A clinical trial of one form of treatment is already underway. The Denver Health and Hospital Authority is leading a multi-center study that includes UCHealth University of Colorado Hospital, National Jewish Health-St Joseph Hospital, Beth Israel Deaconess Medical Center, and Long Island Jewish Hospital in conjunction with Genentech, Inc., enrolling patients with  COVID-19 infection in a randomized clinical trial of tissue plasminogen activator (tPA). This drug is a natural anticoagulant that was approved by the U.S. Food and Drug Administration in 1996 for the treatment of diseases associated with clotting disorders, such as heart attack, stroke, and pulmonary embolism. The trial will assess the efficacy and safety of intravenous tPA in improving respiratory function and management of patients with aggressive blood clotting. “This study suggests that testing whole blood clotting measurements may allow physicians to identify and treat patients with COVID-19 more effectively to prevent complications and encourage further research into therapies to prevent blood clots in these patients,” Dr. Wright said. Dr. Wright’s associates in this study include: Thomas O. Vogler, PhD; Ernest E. Moore, MD, FACS; Hunter B. Moore, MD, PhD; Max V. Wohlauer, MD; Shane Urban, BSN, RN; Trevor L. Nydam, MD, FACS; Peter K. Moore, MD; and Robert C. McIntyre Jr., MD, FACS.   Photo credit: American College of Surgeons Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection
Newswise — It seems fitting that on the 200th anniversary of Florence Nightingale’s birth, nurses are being celebrated the world over for their bravery, kindness, skills and sacrifice. The International Day of the Nurse coincides with the worst pandemic in a century. COVID-19 has already infected more than four million people and killed over 280,000, including a rising tally of healthcare workers. Being on the front line of the pandemic has been bittersweet for the global nursing profession, according to Professor Marion Eckert, Director of the Rosemary Bryant AO Research Centre and Professor of Cancer Nursing in South Australia. “2020 is the International Year of the Nurse and the Midwife,” says Prof Eckert. “We should be planning celebrations this year but instead we are battling a silent killer, leaving not only ourselves vulnerable but our families, too.” Nurses comprise the largest single workforce in Australia, numbering around 380,000 in this country and 28 million worldwide, eclipsing every other profession. Their role is important in normal circumstances; right now, it is pivotal to containing a disease that is crippling health systems and economies across the globe. “The value of nurses has never been more prominent. Every day they are going to work, not knowing if they are going to be infected, or inadvertently infect others. It becomes all encompassing, yet they have to put that aside and focus on the task at hand – caring for others.” Prof Eckert says the community recognition and appreciation has helped nurses cope in these difficult months, particularly in countries where the coronavirus has left an enormous toll. “People clapping in the streets and their neighbourhoods, supermarkets opening early specifically for healthcare workers, and simple gestures like cafes giving free coffees to nurses are all making a difference,” she says. And despite the stresses currently facing the nursing profession, there are opportunities emerging from this crisis. The fast tracking of tele health services is allowing nurses to connect with remote and rural communities in ways they have never done before. The newfound respect for nurses and interest in their role also bodes well for future investment in nursing education and research. In recent days, UniSA’s Rosemary Bryant AO Research Centre has seized the initiative to establish a clinical research network to collaborate on translational nursing and midwifery research across Australia and New Zealand. The centre’s namesake has welcomed the move, saying the COVID-19 pandemic has identified some important gaps in nurses’ and midwives’ education. Dr Rosemary Bryant AO, Australia’s first Commonwealth Chief Nursing and Midwifery Director, and former Executive Director of the Royal College of Nursing Australia, says nursing research receives scant funding compared to health research overall. “Nurses comprise the largest workforce in the country and there is a critical need for research in that area alone,” Dr Bryant says. “It is also timely to look at changes to both the content and length of nursing courses to ensure we are educating them adequately for future challenges.” Describing nurses as “the glue that holds the health system together,” Dr Bryant says in her 50 plus years in the profession, she has seen a gradual shift in community perception towards nurses. “Salaries and working conditions have both improved in recent decades, reflecting the higher status of nurses, but there are subtle shifts, too. Patients have always thanked doctors, but now they are thanking nurses as well. And while people have always been aware of the role that nurses play, this has been heightened during this pandemic.” Dr Bryant says Florence Nightingale, acknowledged as the world’s founder of modern nursing, would be “blown away” by the global efforts of the nursing fraternity to defeat COVID-19. “It was her work in the Crimean War that led to modern infection control and the saving of so many lives. She was the first person to demonstrate that cleanliness and distancing hospital beds were the key to fighting disease.” Two hundred years later, Nightingale’s legacy is crystal clear.
Gastrointestinal symptoms, coupled with a fever or history of exposure to COVID-19, could indicate coronavirus infection in children Newswise — Children suffering from sickness and diarrhea, coupled with a fever or history of exposure to coronavirus, should be suspected of being infected with COVID-19, recommends a new study published in Frontiers in Pediatrics. The research also suggests that the gastrointestinal symptoms first suffered by some children hints at potential infection through the digestive tract, as the type of receptors in cells in the lungs targeted by the virus can also be found in the intestines. "Most children are only mildly affected by COVID-19 and the few severe cases often have underlying health issues. It is easy to miss its diagnosis in the early stage, when a child has non-respiratory symptoms or suffers from another illness," says author of this study, Dr. Wenbin Li, who works at the Department of Pediatrics, Tongji Hospital, Wuhan, China. He continues, "Based on our experience of dealing with COVID-19, in regions where this virus is epidemic, children suffering from digestive tract symptoms, especially with fever and/or a history of exposure to this disease, should be suspected of being infected with this virus." In this study, Li and his colleagues detail the clinical features of children admitted to hospital with non-respiratory symptoms, which were subsequently diagnosed with pneumonia and COVID-19. "These children were seeking medical advice in the emergency department for unrelated problems, for example, one had a kidney stone, another a head trauma. All had pneumonia confirmed by chest CT scan before or soon after admission and then confirmed to have COVID-19. While their initial symptoms may have been unrelated, or their COVID-19 symptoms were initially mild or relatively hidden before their admission to hospital, importantly, 4 of the 5 cases had digestive tract symptoms as the first manifestation of this disease." By highlighting these cases, Li hopes that doctors will use this information to quickly diagnose and isolate patients with similar symptoms, which will aid early treatment and reduce transmission. The researchers also link the children's gastrointestinal symptoms, which have been recorded in adult patients, to an additional potential route of infection. Li explains, "The gastro-intestinal symptoms experienced by these children may be related to the distribution of receptors and the transmission pathway associated with COVID-19 infection in humans. The virus infects people via the ACE2 receptor, which can be found in certain cells in the lungs as well as the intestines. This suggests that COVID-19 might infect patients not only through the respiratory tract in the form of air droplets, but also through the digestive tract by contact or fecal-oral transmission." While COVID-19 tests can occasionally produce false positive readings, Li is certain all these five children were infected with the disease, but he cautions that more research is needed to confirm their findings. "We report five cases of COVID-19 in children showing non-respiratory symptoms as the first manifestation after admission to hospital. The incidence and clinical features of similar cases needs further study in more patients."
Newswise — Children, teens and young adults are at greater risk for severe complications from COVID-19 than previously thought and those with underlying health conditions are at even greater risk, according to a study coauthored by a Rutgers researcher. The study, published in JAMA Pediatrics, is the first to describe the characteristics of seriously ill pediatric COVID-19 patients in North America. “The idea that COVID-19 is sparing of young people is just false,” said study coauthor Lawrence C. Kleinman, professor and vice chair for academic development and chief of the Department of Pediatrics’ Division of Population Health, Quality and Implementation Science at Rutgers Robert Wood Johnson Medical School. “While children are more likely to get very sick if they have other chronic conditions, including obesity, it is important to note that children without chronic illness are also at risk. Parents need to continue to take the virus seriously.” The study followed 48 children and young adults – from newborns to 21 years old — who were admitted to pediatric intensive care units (PICUs) in the United States and Canada for COVID-19 in March and April. More than 80 percent had chronic underlying conditions, such as immune suppression, obesity, diabetes, seizures or chronic lung disease. Of those, 40 percent depended on technological support due to developmental delays or genetic anomalies. More than 20 percent experienced failure of two or more organ systems due to COVID-19, and nearly 40 percent required a breathing tube and ventilator. At the end of the follow-up period, nearly 33 percent of the children were still hospitalized due to COVID-19, with three still requiring ventilator support and one on life support. Two of the children admitted during the three-week study period died. “This study provides a baseline understanding of the early disease burden of COVID-19 in pediatric patients,” said Hariprem Rajasekhar, a pediatric intensivist involved in conducting the study at Robert Wood Johnson Medical School’s Department of Pediatrics. “The findings confirm that this emerging disease was already widespread in March and that it is not universally benign among children.” The researchers said they were “cautiously encouraged” by hospital outcomes for the children studied, citing the 4.2 percent mortality rate for PICU patients compared with published mortality rates of up to 62 percent among adults admitted to ICUs, as well as lower incidences of respiratory failure. Kleinman noted that doctors in the New York metropolitan area are seeing what appears to be a new COVID-related syndrome in children. “Although our data collection for this study has ended, we continue to develop collaborations with colleagues in our region and across the country to try to understand these more severe complications,” he said, citing concerns such as heart failure and the Kawasaki disease–like condition termed pediatric multi-system inflammatory syndrome as examples.
Newswise — A new study shows that a financial incentive can dramatically increase the number of emergency department physicians trained to prescribe a potentially life-saving medication that prevents patients from fatal opioid overdose. Led by researchers in Emergency Medicine at the Perelman School of Medicine at the University of Pennsylvania (Penn Medicine), the study showed that, at its start, just 6 percent of eligible physicians across three different emergency departments (EDs) had the proper training to prescribe the medication buprenorphine. But by offering reimbursement for training and a $750 incentive, 89 percent of physicians in those EDs were fully trained six weeks later. The study was published this month in Annals of Emergency Medicine. “This study shows how enthusiastically emergency physicians embraced the opportunity to obtain this certification, which speaks to the shifting national conversation surrounding opioid use disorder and the importance of meeting patients where they are,” said Sean Foster, MD, an assistant professor of Emergency Medicine and the director of Quality Improvement in Emergency Medicine at Penn Presbyterian Medical Center. “This also gives a ‘playbook’ of sorts to any leaders and administrators who may be looking for ways to get their group trained.” Buprenorphine is an “agonist” drug, meaning that it soothes the brain’s cravings for opioids and has a ceiling effect on their toxic effects, preventing fatal overdose. By prescribing buprenorphine, ED doctors provide a “bridge” from acute care to longer term care that can include everything from counseling to continuing medications that will better support recovery. A post-intervention survey for the study and actual buprenorphine prescribing data showed that in addition to having such a high rate of those trained, which is called getting an “X waiver,” the physicians used their certification fairly quickly. Roughly 65 percent of respondents reported that they either administered or prescribed buprenorphine within the five months of their training.  “Buprenorphine is underutilized because of a lack of X waivered providers and the stigma associated with taking this medication, with some suggesting it’s ‘replacing one drug with another,’” said Jeanmarie Perrone, MD, a professor of Emergency Medicine and the director of the new Center for Addiction Medicine and Policy at Penn Medicine. “’However, buprenorphine has been shown to unequivocally decrease opioid overdose deaths and decrease the transmission of infections such as hepatitis C or HIV.” To get their X waiver, physicians must devote an entire day to training, which can be difficult to schedule amid their many responsibilities. It also wasn’t very common until recently for the emergency department to be the venue for buprenorphine prescription. The incentive and reimbursement ($750 and $200, respectively, in this case) as well as changing attitudes toward the medication seem to make the decision to get an X waiver much easier for the 67 physicians it was offered to. Of the three emergency department locations, two actually achieved a 100 percent X waiver rate. This included one site that went from zero X waivers to all of its ED doctors having one., and another site that went from just three of its physicians having X waivers to 26. The variation in X waiver rates by site was not directly studied, but Foster thinks he knows why one site did particularly well. “That particular site has the most readily available access to certified recovery specialists, who are absolutely essential in making the bridge from the emergency department to the doctor’s office,” Foster explained. “They are also incredible advocates for the patients while in the emergency department, and can help patients work through any hesitation they may have about participating in these treatments.” A related project at Penn Medicine called CORE that utilized both certified recovery specialists and the promotion of X waiver training resulted in 7 out of 10 patients being in active recovery a month after visiting the emergency department. Typical national numbers without buprenorphine prescriptions hover around 1 in 10. While $750 could be seen as steep for some health systems, the post-intervention survey in this study revealed that two-thirds of respondents would have felt moved to get their X waiver even if the incentive was $500 or less. Moving forward, to explore more ways to introduce buprenorphine use, the study team hopes to explore the effectiveness of “mini X waivers,” a shorter training course. “This study targets emergency physicians to ensure that they better understand the way buprenorphine works in order to administer it for opioid withdrawal symptoms in the emergency department,” Perrone said. “In this setting, the X waiver certification is not required but it can still be a bridge to getting patients into treatment.” Other authors on this study included Kathleen Lee, MD; Christopher Edwards, MD; Arthur Pelullo; Utsha Khatri, MD; and Margaret Lowenstein, MD.
Newswise — Despite the use of personal protective equipment (PPE), reports show that many health care workers contracted the coronavirus disease (COVID-19), which raises substantial concerns about the effectiveness of the PPE. Highly sought after PPE used in hospitals and other health care settings is critical in ensuring the safety of those on the frontline of COVID-19, but only if they are used  properly. A physician from Florida Atlantic University’s Schmidt College of Medicine and collaborators from the University of Arizona College of Medicine -Tucson and the Indiana University School of Medicine conducted a novel training technique to reinforce the importance of using proper procedures to put on and take off PPE when caring for patients during the pandemic. Researchers were able to vividly demonstrate how aerosol-generating procedures can lead to exposure of the contagion with improper use of PPE. To detect contamination, Patrick G. Hughes, D.O., lead author, director of FAU’s emergency medicine simulation program and an assistant professor of Integrated Medical Science, FAU’s Schmidt College of Medicine, and collaborators, used a nontoxic fluorescent solution during a PPE training session for health care staff. They placed a highlighter refill in a warm water bath for 15 minutes to create a fluorescent solution, which is only visible under ultraviolet light. For the experiment, published in the journal Medical Education, the researchers instructed health care staff to put on PPE, which included a cap, gown, surgical gloves, eye protection, face shield and N95 mask. In order to conserve vital PPE, supplies were wiped off and reused for multiple trainings. After health care staff in the study put on their PPE, they went in to a room to care for a simulated patient sprayed down with the invisible simulated contagion. In addition, the researchers added the fluorescent solution to a simulated albuterol nebulizer treatment, which was given to the mannequins during the scenario (not in a negative pressure room). After completing the simulated case, the health care staff remained in their PPE and were taken to another room, where the lights were turned off prior to removing their PPE. Turning off the lights enabled the identification of widespread simulated contagion on the PPE, both on the gloves and gowns from directly touching the simulated patient and on the face shields and masks from the aerosolized solution. The researchers used a black light flashlight to examine each health care worker and to identify the presence of any fluorescent solution. Following the flashlight examination, the health care staff completely removed their PPE. Researchers discovered the presence of fluorescent solution on the health care staff’s skin, which represented an exposure to the contagion and indicated that they made an error while putting on or taking off their PPE. Results from the experiment revealed that the most common error made by the health care staff was contaminating the face or forearms during PPE removal. In contrast, those who put on and took off their PPE according to guidelines had no signs of the fluorescent contagion on their skin or face. “This training method allows educators and learners to easily visualize any contamination on themselves after they fully remove their personal protective equipment,” said Hughes. “We can make immediate corrections to each individual’s technique based on visual evidence of the exposure.” By providing health care staff with visual evidence of protection during patient encounters with high-risk aerosol-generating procedures, this innovative training method is helping to inspire trust in their training and PPE. “This experiment demonstrated that following PPE training improves workplace safety and decreases the risk of transmission,” said Hughes. “This simulation-based approach provides an efficient, low-cost solution that can be implemented in any hospital.”   Hughes also conducted this training technique with FAU’s emergency medicine resident physicians in the medical school’s Clinical Skills Simulation Center, which uses high-tech and high-fidelity patient mannequins in life-like hospital and emergency room settings. The center applies sophisticated simulation and trainer technologies to educate medical students, resident physicians, registered nurses, first responders, certified nursing assistants, home health aides and community health care providers. The center has created models of hospital rooms, patient examination, and emergency rooms for simulated patient treatment. The rooms are fully equipped with hospital beds, gurneys or exam tables, monitors, IV poles, defibrillators, blood pressure cuffs, simulated oxygen ports, otoscopes and ophthalmoscopes and all equipment and supplies required to respond to medical and nursing interventions, including emergencies. The simulation team uses high fidelity wireless, full body male and female mannequins. The simulators track all actions taken and all pharmacological agents given to the patients. If incorrect drugs or dosages are administered, the high-fidelity patient responds exactly as a human patient would respond. Preceptors and session facilitators provide guidance during the simulations. Study co-authors are Kate E. Hughes, D.O., emergency medicine, University of Arizona College of Medicine -Tucson; and Rami A. Ahmed, D.O., emergency medicine, Indiana University School of Medicine, Indianapolis.   Photo Credit: Rami A. Ahmed, D.O.
Newswise — April 29, 2020 – Early reports of COVID-19 symptoms and the compelling need to quickly identify treatment options and curb the growing number of critically ill patients have led to erroneous and potentially dangerous comparisons between COVID-19 and other respiratory diseases like high altitude pulmonary edema, or HAPE. In “COVID-19 Lung Injury and High Altitude Pulmonary Edema:  A False Equation with Dangerous Implications,” the authors urge clinicians to rely on scientific evidence to guide treatment. The paper was posted early online in the Annals of the American Thoracic Society. There are some similarities between COVID-19 and HAPE as there are similarities between COVID-19 and other respiratory illnesses that cause respiratory failure: very low oxygen levels in the blood, significant difficulty breathing, the degree to which there is stiffness in the lungs, and abnormal findings on chest CT scans. However, there are fundamental differences between COVID-19 and HAPE. “HAPE develops when people ascend to high altitude. The low oxygen levels in the atmosphere cause low oxygen levels in the air sacs of the lungs,” said Andrew Luks, MD, professor of medicine in the Division of Pulmonary, Critical Care and Sleep Medicine at Harborview Medical Center and the University of Washington. “In all people, this leads the blood vessels in the lungs to constrict and raises the blood pressure in the lungs (pulmonary artery pressure). In people who develop HAPE, this response is excessive. There is far too much vasoconstriction and far too great a rise in pulmonary artery pressure, all of which lead fluid to leak out of the blood vessels into the lung tissue, but this occurs with no inflammation.” “In lung injury due to COVID-19, the virus attacks the cells that make up the air sacs of the lungs. This leads to a big inflammatory response that damages the air sacs (alveoli), leading fluid to leak out of the blood vessels even under much lower pressures, causes the alveoli to collapse, interferes with gas exchange and makes the lungs stiffer and harder to expand than normal. “ These fundamental differences necessitate different treatment approaches. While treatment with oxygen can resolve HAPE symptoms, oxygen alone is ineffective for the lung injury associated with COVID-19. Nifedpine and acetazolamide, two medications used to treat altitude sickness, can have dangerous consequences in COVID-19 patients. “If given to a patient with lung injury due to COVID-19, it [nifedpine] has the potential to actually worsen oxygen levels in the blood and to lower systemic or whole body blood pressure,” said Dr. Luks. Treating with acetazolamide can cause a host of problems, among them “fatigue of the diaphragm, causing the blood to become more acidic, and at high enough concentrations in the blood, impairing the transport and elimination of carbon dioxide, all of which will make patients even more short of breath.” COVID-19 has affected how the medical community shares information and what the community is learning about the disease can change quickly. Clinicians and families are looking for data to help care for patients. Dr. Luks and his co-authors warn that without careful scrutiny, misinformation can quickly spread. Now more than ever, it is critical that clinicians rely on the data accumulated over time and scientific evidence related to treating acute lung injury.
Newswise — Amid the rapidly evolving global coronavirus disease 2019 (COVID-19) pandemic that has already had profound effects on public health and medical infrastructure across the globe, many questions remain about its impact on child health. New research published in the Journal of Clinical Virology indicates that the vulnerability of neonates and children and their role in the spread of the virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) should be included in preparedness and response plans. According to lead author Kathleen M. Muldoon, Ph.D., Associate Professor, Anatomy at the Arizona College of Osteopathic Medicine at Midwestern University, the COVID-19 pandemic poses substantial and underappreciated risks to pregnant women, and perinatal infections endanger pregnancy outcomes. "Studies to date suggest that the virus can be transmitted to the fetus in utero," Dr. Muldoon says. "Although the evidence for infection is under debate, the possible routes for infection are such that infection control measures are required to protect newborns." The potential for neonatal infection with the COVID-19 virus demands intensive study, including how viral pathology may or may not affect breast milk as the preferred method of infant nutrition, as well as the potential effects of vaccines on women of child-bearing age, unborn fetuses, and newborn infants. "We are presenting the state of knowledge acquired to date about potential risks of transmission of SARS-CoV-2 to the fetus and newborn," continues Dr. Muldoon. "This research is timely because information regarding the potential routes of acquisition of SARS-CoV-2 infection in the prenatal and perinatal setting is of a high public health priority. Vaccines targeting women of reproductive age, and in particular pregnant patients, should be evaluated in clinical trials and should include the endpoints of neonatal infection and disease."
Newswise — CHICAGO (April 28, 2020): Amid shortages of personal protective equipment due to the Coronavirus Disease 2019 (COVID-19) pandemic, a St. Louis health care system has implemented a process to disinfect disposable N95 respirator masks that allows health care workers to reuse their own mask for up to 20 cycles. The novel disinfection process, developed in collaboration with Washington University School of Medicine, uses vaporized hydrogen peroxide and is described in an “article in press” on the Journal of the American College of Surgeons website in advance of print. Test results from a pilot program at Barnes-Jewish Hospital and two other hospitals that are also part of BJC HealthCare, showed that the disinfection process kills germs from N95 masks while ensuring that the only person who touches the mask is the original mask wearer, study authors reported. “Our primary outcome is safety for the health care worker,” said project leader and study coauthor Andrew Pierce, MHSA, director of supply plus at Barnes-Jewish. “We want to make it safer for team members who are at risk while taking care of patients with a known or possible COVID-19 diagnosis.”  Their program uses a disinfecting procedure first tested by Duke University researchers in 2016.1 However, the Barnes-Jewish process has a unique modification—an identification system that enables the hospital to return the sanitized mask to the same individual each time, said senior author Shaina Eckhouse, MD, FACS, assistant professor of surgery at Washington University School of Medicine, St. Louis. Dr. Eckhouse is part of the multidisciplinary team of university and hospital staff who developed the disinfection program. This approach, according to the authors, increased employee acceptance of reusing what is normally a single-use N95 mask and helped ensure proper fit of the returned mask. During the COVID-19 pandemic, the Centers for Disease Control and Prevention has recommended strategies for conserving personal protective equipment, including decontamination and reuse of N95 masks.2Almost half of U.S. health care facilities reported being nearly or completely out of N95 respirator masks, according to a March 27 survey conducted by the Association for Professionals in Infection Control and Epidemiology.3  In late March, before the program began, Barnes-Jewish had a low inventory of N95 masks—about a week’s worth—and no expectations for replenishment because of international shortages in hospital supply chains, according to Mr. Pierce. How the process works The disinfection process that has since been put into place begins at the end of a shift.  A health care provider removes his or her N95 mask in that unit’s soiled utility room and places it in a sterilization pouch (Crosstex) made of breathable polyethylene fiber (Tyvek by DuPont) on one side. On the other side of the sealed pouch, the worker writes his or her name or employee ID number, hospital, department, and unit location and puts the pouch in the soiled collection bin. A designated worker wearing proper protection collects the bins twice a day and takes them to a specially designed and sealed disinfection room—built in four days, according to Dr. Eckhouse. There the pouches are arranged, breathable side up, by clinical unit on wire racks. A hydrogen peroxide vapor generator (Bioquell Z-2), which Washington University already owned to decontaminate equipment, fills the room with the chemical. After 4.5 hours of disinfection, a worker moves the racks of masks to another area that has a fan to offgas the hydrogen peroxide, where the masks stay until sensors record a zero reading. The pouches are returned to their respective units in a decontaminated bin, finishing a process that takes about seven hours, Mr. Pierce said. Workers can wear their mask up to three weeks because past studies show that disinfection more than 20 times could alter the fit of the mask, he noted.  Since the program began April 1 in the Barnes-Jewish emergency department, it expanded in just two weeks to additional clinical departments and other hospitals in the system, which Mr. Pierce called “an immense achievement.” “A welcome improvement” Currently, Mr. Pierce said they are disinfecting 240 N95 masks a day and have the capability of disinfecting 1,500 masks daily. Without the disinfection program, he said the health care system would need to discard a substantial amount of its respirator masks. Because of the disinfection, the hospitals now have enough masks to last for weeks.   “This program is a welcome improvement for extended usage of N95s during the shortage that we are facing,” Mr. Pierce said. Dr. Eckhouse said other hospitals facing mask shortages can reproduce the disinfection program if they bring together experts in environmental health and safety, medicine, and facility management. “Having the infrastructure already in place would improve the ease of deploying an N95 disinfection process,” she stated.  Other study coauthors are Julie Grossman, MD; Jessica Mody, MHA; Jason Gagne, TS; Carol Sykora, CIC, FAPIC; Sena Sayood, MD; Susan Cook, PhD; Nirah Shomer, DVM, PhD; and Stephen Y. Liang, MD, MPHS. “FACS” designates that a surgeon is a Fellow of the American College of Surgeons.   Image Credit: American College of SurgeonsCredit: Institution of a Novel Process for N95 Respirator Disinfection with Vaporized Hydrogen Peroxide in the Setting of the COVID-19 Pandemic at a Large Academic Medical Center
Janice M. Mehnert, MD   Newswise — New Brunswick, N.J. – April 27, 2020 – According to the National Cancer Institute, some 100,350 new cases of melanoma are expected in the U.S. this year with 6,850 deaths. Half of all melanoma cases have what is known as a BRAF mutation, and only about half of those treated with a BRAF-inhibitor (targeted therapy) respond to treatment. As part of the SWOG Cancer Research Network and ECOG-ACRIN Cancer Research Group, investigators collaborated on a randomized phase 2 clinical trial examining the targeted therapy drugs dabrafenib and tremetinib in both continuous and intermittent treatment of patients with BRAF-mutated melanoma and found continuous dosing yields superior progression free survival. Janice M. Mehnert, MD, director of the Phase I/Investigational Therapeutics Program at Rutgers Cancer Institute of New Jersey, and lead author Alain P. Algazi, MD, University of California San Francisco, are among the investigators. The research is being presented at the Opening Clinical Plenary Session of the virtual American Association for Cancer Research Annual Meeting, which was postponed as an in-person event this week due to COVID-19 concerns. Dr. Mehnert, who is also a medical oncologist in the Melanoma and Soft Tissue Oncology Program at Rutgers Cancer Institute and an associate professor at Rutgers Robert Wood Johnson Medical School, shares more about the work. Q: What prompted you and your colleagues to focus on this work? A:  A Nature paper in 2011 (Das Thakur, et al.) demonstrated that in mice, withdrawal of therapy was able to induce a partial regression of melanoma tumors, and alternating periods with and without drug prolonged the time that the treatments worked. This led us to wonder whether this could be a more effective approach toward both delaying resistance to therapy and to ameliorating toxicity in patients treated with targeted therapy. In other words, could less therapy be more effective in patients? Q: Tell us about the study and how it was conducted. A: The 206 eligible patients all underwent an eight week lead in of drug therapy. Patients were then randomized to go forward on a continuous schedule or to an intermittent schedule of three weeks on therapy followed by five weeks off therapy. This was a large and rigorous study. Patients were drawn from 68 centers over five years. Seventy percent of the patients had not been treated with immune checkpoint inhibitors previously. Q: What did you find? A: In patients treated on this trial, the median progression-free survival was statistically significantly longer, 9.0 months from randomization, versus intermittent dosing at 5.5 months. There was no difference in overall survival between the groups at a follow up of two years. Q: What are next steps related to this work? A: On the schedules tested in this trial, continuous therapy is the optimal choice of targeted therapy. This is at odds with what was seen in the laboratory and with a few smaller studies that indicate treatment breaks may have benefit. It’s possible that different schedules with shorter drug-free intervals could have produced a different result, but it's hard to test this in patients because the drugs are metabolized differently in people than in mice.  Given these results, continuous therapy remains the current standard of care.   This research was supported in part by grants from the National Institutes of Health/National Cancer Institute: CA180888, CA180819, CA180820, CA180850, CA239767, CA189808, CA46282, CA189858, CA189830, CA233230, CA189829, CA189954, CA189860, CA189822, CA189953, CA180834, CA189809, CA189957, and CA189958 (to SWOG), R35 CA197633 (to A.R.), and P01 CA244118 (to A.R. and R.S.L).  The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. A full author list, author disclosures and other information can be found at: https://www.abstractsonline.com/pp8/#!/9045/presentation/10595.