News

These daily fluctuations might be subtle, but that doesn't mean they're not happening. By denying or resisting your own transitory nature, you will make yourself utterly miserable.  Most of us do pick up on these changes, whether we're tuned into them every second or every few days. (How many times have you been guilty of muttering, "I feel so fat today" to your best friend?)  Acknowledging them is not only okay, it's normal. Society likes to make women out as "crazy" for having feelings, intuition, and sensitivity. We're judged by standards that were never meant for us, thanks to the patriarchy and our sexually repressed Anglo-Saxon foundation. Guess what? "Sensitivity" just means we have the gift of being able to pick up on subtle sh*t. If someone calls you "too sensitive," what they really mean "you're making me feel crazy because I can't see the subtle things you see, and I don't like that." Immediately let go of any narrative you've been clinging to that your emotions or ability to perceive things make you crazy. They don't. A problem arises, however, when you become deeply attached to only one part of your body's total experience. When your body isn't in the one exact state you are attached to, you might feel shame, anger, or sadness. Maybe you feel like you should look and feel a certain way all the time. If you desperately crave arrival at an end point, where you can finally rest from the exhausting pursuit of your body's perfection, then it's time to let that go. There is no such end point. The only way you can rest is by letting go of the attachment. How to do that? By realizing that these fluctuations are a very normal—healthy even—part of existing in a human body. Let's take a look at a handful of changes your body might go through on a daily basis that could trigger attachment anxiety.  On a Thursday you look in the mirror. You've been eating well since Sunday, crushing your workouts, and getting lots of sleep all week. You look at your naked body and think, God, yes! I look awesome. Then you put on something hot and go out to happy hour for margaritas and Mexican food. You wake up on Friday morning to find a bloated hippopotamus looking back at you in the mirror. If you weighed yourself, you might even be up three to five pounds from the night before. Now, let's look at the facts here. Did you gain a bunch of fat since yesterday? No, that's impossible. Is it all in your head? No, because as we've established already, you're not a crazy person. (You have a female superpower. You pick up on subtle changes.) So what caused this overnight change? Water retention. Due to some awesome chemistry between salt, water, carbs, and even alcohol, your body can either be holding a little water or a lot. Bodybuilders and fitness models manipulate the way their bodies hold water in order to "peak," which just means they get as dehydrated and "dry" as possible for a very temporary appearance of maximum leanness.  The "water pills" and diuretics that are sold over the counter create a similar effect. The results of a dedicated peaking protocol, which have nothing to do with fat, are dramatic. You can go from pretty lean to "holy sh*t, I'm shredded" just by playing with water retention. However, it's extremely temporary, and in many cases, it's also wildly unhealthy. At some point in your life, you may have accidentally "peaked." In my example above, you might have felt de-puffed on Thursday night thanks to a week of drinking lots of water, sweaty workouts, and eating low-sodium and low-carb home-cooked dinners. By attaching your happiness to this one small part of the experience, of having a body in which you retain very little water, you set yourself up to feel awful the next day when it shifted again. It's also worth mentioning here that the stress hormone cortisol causes you to hold water in a major way. So if you've been restful, sleeping a lot, and happy all week, your cortisol will be low, and therefore, so will your water-retention levels. This is one of the main reasons for that mysterious "vacation abs" phenomenon, when (despite eating whatever you want and not working out) your body looks inexplicably lean and sexy on vacation. If you hold a lot of water normally due to stress, suddenly being restful and joyful will bring about some fluctuations. Elevation, like traveling by plane, can also cause changes in water retention. So what to do? Stop worshipping one half of this cycle and condemning the other. There are certainly some habitual lifestyle factors worth considering and improving here, such as getting more sleep, lowering stress, drinking more water, and eating less processed foods. But water fluctuations are normal. Even someone who is super healthy will notice them from time to time. So find love for the puff.   To read full story click here Credit JESSI KNEELAND
Scientists don’t know all the causes of autism, but they do know that certain genes and environmental factors can play a role in the broad spectrum of developmental disabilities that fall under the term. Gaining additional knowledge isn’t easy, however, because most of the nitty gritty brain research is done in rodents — animals that don’t mimic complex brain disorders well. Now, researchers in China say that they’ve managed to produce monkeys that display autism-like behaviors for the first time, according to a study published in Nature today. Their research, however, raises questions about scientists’ ability to create a non-human primate model of autism that’s actually valid. SCIENTISTS INTRODUCED A HUMAN GENE INTO THE MONKEYS' DNA   To produce the monkeys, the scientists introduced a human gene called MeCP2 in the genome of macaques. The gene caused the monkeys to display behavioral symptoms akin to those seen in children with MeCP2 duplication syndrome — a rare disorder that causes autism-like behaviors. These symptoms include repetitive movements, anxiety, and decreased social interaction. In addition, the monkeys were able to pass the gene and their associated symptoms down to their offspring, which means these monkeys may give researchers a chance to study the genetics of autism spectrum disorders in a much more robust way than they’ve been able to in the past. Scientists might even be able to come up with treatments to reduce symptoms of autism in humans, the authors of the study say. But other researchers have doubts about the effectiveness of using these primates to model human brain disorders. Unlike children who have the MeCP2 duplication syndrome, the monkeys in the experiment weren’t severely developmentally delayed; combined with the high cost of producing these animals, there are big enough problems to put the entire model into question. "In all honesty, I’m not so excited about this study," says Hilde Van Esch, a geneticist at the University of Leuven in Belgium who studies MeCP2 duplication syndrome. Many children who have the duplication syndrome meet the formal criteria for an autism diagnosis, but they also tend to have symptoms that aren’t typical of autism, like "severe developmental delays, seizures, some [can’t] walk without aid," she says. The fact that these monkeys don’t have these problems is "surprising." And because the syndrome is rare in humans, it’s unclear how these monkeys might help autism research as a whole. "MeCP2 duplication syndrome is surely not ‘the’ prototype of autism," she says. "So the clinical utility of this model is, in my opinion, very low." Huda Zoghbi, director of the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, also thinks that the monkeys’ symptoms put the validity of the animal model into question. The monkeys failed to develop the cardinal features of the MeCP2 duplication syndrome, and only the male monkeys had social interaction deficits — a fact that the authors of the study don’t explain. That means that the monkeys "don’t reproduce the human duplication disorder," she says. Because of these uncertainties, using the monkeys to model autism doesn’t make sense, she says.   THESE MONKEYS "ARE THE FIRST PRIMATE MODELS OF AUTISM." The scientists who produced the monkeys are far more optimistic. These monkeys "are the first primate models of autism," says Zilong Qiu, a neuroscientist at the Chinese Academy of Sciences in Beijing and a co-author of the study. "I’m thrilled by the possibility that we may be able to reverse the genetic causes in the transgenic autism monkey model." In humans, MeCP2 duplication syndrome occurs when humans have extra copies of the MeCP2 genes. To replicate this syndrome in macaques, scientists genetically modified monkey embryos by introducing the MeCP2 gene into the monkey’s DNA. Then, they implanted over 50 embryos into 18 surrogate monkeys. A total of nine female surrogates became pregnant, but only eight baby monkeys were born alive. These macaques displayed some of the symptoms typical of children with MeCP2 duplication syndrome, including anxiety, repetitive behaviors, what Qiu refers to as "defects in social interactions" with other monkeys. In addition, the researchers used sperm from the first generation of monkeys to create a second generation of transgenic monkeys who also displayed autism-like behaviors. Now that the monkeys have been developed, Qiu and his team of researchers have begun to use brain imaging technology to identify brain circuits that play a role in the monkeys’ autism-like behaviors. If the researchers can do that, they might be able to "rescue the affected brain circuits," Qiu says — and alter the monkeys’ autism-like behaviors. As a model for autism, the monkeys "aren’t perfect," but they could be better than mice designed to replicate the syndrome, says Alysson Muotri, a human brain development researcher at the University of California–San Diego. "At least the [monkeys] could mimic autism-like behaviors," he says. Still, it’s unclear if the monkeys "can actually generate novel insights into the human condition," Muotri says. The study published today doesn’t reveal anything new — and that’s a bit of a letdown, he says. "I would expect to learn some new biology here, but I have not." "I WOULD EXPECT TO LEARN SOME NEW BIOLOGY HERE, BUT I HAVE NOT." Even if the researchers can improve their model, the high cost of producing the monkeys will pose an important barrier to further research. "Primate studies are extremely expensive — the animals live a long time and have long gestation periods compared to rodents," Zoghbi says. "I think we should always make sure that our effort produces results worth the investment." Van Esch agrees. "In my opinion, there are easier and cheaper ways to study neurodevelopmental disorders." It’s also worth noting that DNA isn’t the only factor involved in autism spectrum disorders; environmental factors, like pesticides, have been linked to autism as well. So even though there’s a lot of value in studying how human genes lead to autism-like behaviors, DNA is just one piece of the puzzle. The fact that monkeys are more closely related to humans shouldn’t be used to justify using an inadequate model, Zoghbi says. "Decades of research using mice that do not [mimic features of the syndrome as closely as possible] resulted in a lot of research that can’t be translated, so it is important that we hold same standards to non-human primate models." And that means stating the limitations of each new animal model clearly. "We have to be very careful when there is a lot of desperation from human patients for answers to their problem — whether that be autism or Alzheimer’s or cancer or any other dreaded disease."   Credit  Arielle Duhaime-Ross
You see them everywhere, on people’s wrists and in annoyingly contagious adverts but could wearable fitness devices be put to even better use? Yes, they monitor your day to day ‘fitness’, such things as how many steps you’re taking and how much sleep you’re getting but if they are able to gather this sort of information could they not also gather data that tells you there is something seriously wrong? That is certainly the hope and idea behind aparito, an app and wearable device that aims to help children suffering from a variety of diseases. Founder and director of aparito, Dr. Elin Haf Davies, who has worked as a children’s nurse for many years, explains how aparito was born out of a ‘frustration that we were relying on very sterile snapshots of data that tell you how the patient is doing on a hospital visit but which doesn’t actually tell you anything about how they’re coping in day to day life at home.’ I hope our approach will contribute quite significantly to changing the way patients are in control of their own data. The idea behind aparito is simple: to take information gathered by the wearable device, combine it with the patient’s perspective on how they are handling their illness. The data can be accessed by the patient’s doctor in real-time at all times, cutting out the need for all manner of long and arduous tests to get the same results. The key to this is that the app and wearable device are designed to benefit both the patient and the doctor. The patient is able to keep track of their symptoms and therefore better manage their illness as well as knowing when to take medication. Meanwhile, the doctor is able to monitor the everyday activity of the patient.   To read full story Click Here Credit Alex Moss
Researchers at Vanderbilt University have developed a technique to mimic complex systems of capillaries using cotton candy machines. The new technique is used in creating three-dimensional templates of the capillary system and is said to be a huge improvement over other methods. Sugar wouldn't work in creating the threads needed for the template—it was too soluable—so the researchers turned to a special polymer for the job. After spinning a system of polymer threads, the researchers pour a gelatin mixture that includes human cells over the polymer structure. Once the mixture cools, the polymer threads dissolve, leaving behind an elaborate network of tiny passages. "Some people in the field think this approach is a little crazy,” researcher Leon Bellan told Vanderbilt's research news site, “but now we’ve shown we can use this simple technique to make microfluidic networks that mimic the three-dimensional capillary system in the human body in a cell-friendly fashion." Bellan bought his first cotton candy machine from Target for $40—a small price in creating a technique that could help in engineering much-needed livers, kidneys, or bones.   To read full story Click Here Credit NICOLE CARPENTER
If you were wondering why your hair was looking somewhat less lustrous than in previous years, we finally have an answer for you: it's because your thinning hair is turning into skin. For the first time, researchers have pinpointed a mechanism that turns age damaged stem cells in hair follicles into skin. As it happens to more and more stem cells, the hair follicles shrink and eventually disappear -- leaving you hairless. It's the first time such a mechanism has been identified with ageing. Unlike stem cells elsewhere in the body, hair follicle cells regenerate on a cyclical basis -- a growth phase is followed by a dormant phase in which they stop producing hair.  To find out why hair thins, Emi Nishimura and her team at Tokyo Medical and Dental University began looking at follicle stem cell growth cycles in mice. They found that age-related DNA damage triggers the destruction of the protein Collagen 17A1, which in turn triggers the transformation into 'epidermal keratinocytes' -- or skin. When the research was replicated in humans, they found that follicles in people aged over 55 were also smaller, and lower in Collagen 17A1. "We assume that ageing processes and mechanisms explain the human age-associated hair thinning and hair loss," Nishimura said.  Hair follicle stem cells are now likely to be used as a model for studying more general stem cell behaviour. Researchers are keen to point out that stem cell depletion is unlikely to be the only cause of hair loss, but suggest that Collagen 17A1 could be used as a target for hair loss treatments.    To read full story Click Here Credit Emily Reynolds  
A 10-minute cancer test which can be taken at home using just a drop of saliva is being developed by scientists. David Wong, a professor of oncology at California State University says it is possible to detect tumour DNA when is it circulating in bodily fluids – an approach known as a liquid biopsy. The saliva test is 100 per cent accurate and is so simple that it could be carried out at a pharmacist, the dentist or even in the privacy of someone's own home if they were concerned, he said. Currently scientists can only use blood tests to detect cancer if they have already taken a biopsy and sequenced a tumour, so they know which genetic signature to look for. Although this can be used to monitor cancer spread it cannot be used for an initial test. And it can throw up false positive. Professor Wong's tests have shown that just a single drop of saliva contains enough data to give a definitive diagnosis as soon as a tumour develops, he said. The test is non-invasive and cheap, costing around just £15. It is due to enter full clinical trials in lung cancer patients later this year, and is expecting approval within two years from the Food and Drug Administration in America. He is hoping it will be available in Britain by the end of the decade, and believes it could be useful for many other cancers, such as oral cancer. “If there is circulating signature of a tumour in a person blood or saliva, this test will find it,” Professor Wong told the American Association for the Advancement of Science annual meeting in Washington. “We need less than one drop of saliva and we can turn the test around in 10 minutes. It can be done in a doctor’s office while you wait. “Early detection is crucial. Any time you gain in finding out that someone has a life-threatening cancer, the sooner the better.   To read full story Click Here Credit Sarah Knapton      
In “I’ve Seen The Future Of Healthcare. I Like What I See,” I noted ZOOM+ had a radically different approach to emergency rooms. Now that ZOOM+ is also a health plan, it’s logical that they would go after one of the biggest areas of unnecessary and expensive care—the ER. Rather than viewing it as a profit engine, they simply view their ER as one of the important pieces of the puzzle in building the Kaiser Permanente for the 21st century . This new approach implicitly addresses the Quadruple Aim more effectively than any other ER I’ve seen or heard about. I expect this approach to ERs will be a new component of the Health Rosetta that raises the bar on the under-performing status quo. As you visit their facilities or see the pictures in this article, I’m struck with the thought that if Steve Jobs was creating a clinic or an ER, ZOOM+ is what he would have created. The radical simplicity of this and the Transparent Medical Network that was highlighted in “The Silver Bullet To Solving Healthcare’s Most Vexing Problem” are the two most straightforward ways I’ve seen to slay the healthcare cost beast. One could imagine how next generation health plans such as Alignment Healthcare, CareMore, Clover Health, Humana’s Medicare Advantage (where they partner with ChenMed and Iora Health) and Oscar would employ these two strategies. Not only does it save money, it also would serve a “ billboard” for these new brands. There aren’t many “try before you buy” options available to healthcare. This would be one. [Disclosure: As I've disclosed many times, the Health Rosetta is a non-commercial open-source project that provides a reference model for how purchasers of healthcare should procure health services. In my role as managing partner of Healthfundr, a seed stage venture fund, we invest in companies adhering to precepts of the Health Rosetta.]   In the earlier piece, I summarized what ZOOM+ is doing with their ZOOM+ Super ER concept that is meant to radically reduce unnecessary hospitalizations. Unlike many new freestanding ER concepts that do little to positively impact the Quadruple Aim, it’s clear that the ZOOM+ Super concept is designed to be pleasant for the board-certified ER docs. This naturally leads to a better patient experience, which in turn helps improve outcomes. The byproduct is an approach that clearly lowers overall healthcare spending. That stands in stark contrast to many freestanding ERs where there has been quite a bit of abuse. To read full story Click Here Credit Dave Chase
A plant-based ointment recipe pulled from a 1,000-year-old manuscript is spiking excitement about what historical knowledge and traditional remedies can do to defuse the antibiotic crisis. At the same time, it’s highlighting how difficult it can be to move any compound—natural or synthetic, ancient or modern—from the lab bench to where it might do the most good. You might have seen coverage of this: At the annual conference of the British Society for General Microbiology last week, a team of researchers from the University of Nottingham in England and Texas Tech University in the United States presented the results of their attempt to translate and manufacture an ointment described in a medieval manuscript held at the British Library. (The abstract doesn’t seem to be online, except within the conference program, so I snipped it and uploaded it to my Scribd account here.) The text, called Bald’s Leechbook, is in Anglo-Saxon; you can think of it as one of the earliest medical textbooks written in the West. The recipe is presented as a remedy for styes, pustular infections of an eyelash follicle that, in the pre-antibiotic era—and the 10th century was definitely pre-antibiotics—could cause blindness or even death if the infection spread to the nearby brain. It specifies garlic, leek, onion, honey, and bile from the digestive system of a slaughtered cow, and describes in detail how the potion should be made, by boiling up a solution in a brass vessel and fermenting it. And, apparently, it works. The UK arm of the team translated the recipe, concocted it, and conducted initial tests on bacteria on culture plates. The US side tested it on infected tissue harvested from lab mice. In both settings, the potion killed MRSA, drug-resistant staph—and killed at higher rates than vancomycin, a last-ditch drug that medicine reserves for serious infections with that superbug. “We were really surprised, and I was surprised,” Christina Lee, PhD, a medieval scholar on the team, confessed by phone. “I have always held up the idea of the pragmatic Middle Ages, that they had knowledge and method, but I was not sure whether that would hold up.”   To read full story Click Here Credit Maryn McKenna  
An outbreak at a Pennsylvania hospital in late 2012 should have been an early warning that a reusable medical scope was spreading deadly infections and nearly impossible to disinfect. But staff at the federal Food and Drug Administration lost the report, one of multiple missteps that allowed doctors and hospitals to continue using the scope for three more years even as dozens of patients were sickened. The missing paperwork, revealed in a recent Senate inquiry, underscores the serious shortcomings in the antiquated national database used to monitor the safety of medical devices, which even the FDA has long admitted is flawed. But the fix called for by the Senate investigators — the speedy implementation of a new system already a decade in the making — has hit a roadblock put up by two powerful opponents who say an essential part of the safety upgrade will cost too much. Patients may now have to wait another decade for the new system, a delay that could lead to more patient deaths. "We need to build a better system to find these problems more quickly," said Dr. Josh Rising, director of healthcare programs at the Pew Charitable Trusts. Further postponement, he said, "could compromise the safety of millions of Americans." The device known as a duodenoscope is only the most recent example of a risky medical device that was used in tens of thousands of patients before regulators finally pinpointed a deadly problem in its design. Regulators did not warn hospitals about its risks until after The Times reported an outbreak at UCLA that killed three patients.   To read full story Click Here Credit Melody Petersen 
Imagine your child requires a life-saving operation. You enter the hospital and are confronted with a stark choice.    Do you take the traditional path with human medical staff, including doctors and nurses, where long-term trials have shown a 90% chance that they will save your child’s life?   Or do you choose the robotic track, in the factory-like wing of the hospital, tended to by technical specialists and an array of robots, but where similar long-term trials have shown that your child has a 95% chance of survival?   Most rational people would opt for the course of action that is more likely to save their child. But are we really ready to let machines take over from a human in delivering patient care?   Of course, machines will not always get it right. But like autopilots in aircraft, and the driverless cars that are just around the corner, medical robots do not need to be perfect, they just have to be better than humans.   So how long before robots are shown to perform better than humans at surgery and other patient care? It may be sooner, or it may be later, but it will happen one day.   But what does this mean for our hospitals? Are the new hospitals being built now ready for a robotic future? Are we planning for large-scale role changes for the humans in our future robotic factory-like hospitals?   To read full article Click Here