News

New research attempts to shed light on the most common reasons patients are readmitted post-surgery, and how hospitals can nip the issue in the bud.  In a study recently published in the Journal of the American Medical Association (JAMA), a team of researchers looked at readmission rates after surgical procedures overall, as well as rates for several specific surgeries. The goal was to determine what sorts of problems caused complications requiring unexpected readmission. Information was pulled from the American College of Surgeons National Surgical Quality Improvement Program. The program tracks the primary reason for a patient’s readmission, which helped researchers figure out whether the subsequent hospital visit was related to the person’s initial condition. After looking at the data for close to 450 hospitals over a year-long period, researchers found that the number one reason for patients to be readmitted to the hospital after surgery was experiencing a surgical site infection. The second reason: an obstruction or ileus. To read full story Click Here Credit Jess White 
By Aliya Barnwell        2.4K                     Subscribe on YouTube   When tech and medicine meet, everyone benefits. The tech doesn’t have to be a new MRI or laser printed organs, either — even the lowly bandage can benefit from an upgrade. Different researchers worldwide are using their particular expertise to develop a host of newer, smarter, more effective bandages; many of which are steadily making their way out of the lab and into the real world. Here’s a quick overview of all the awesome bandage tech that you can expect to see in the not-so-distant future:   A Bandage of a Different Color   In 2010, a German team from the Fraunhofer Research Institutions for Microsystems and Solid State Technology EMFT created a bandage that looks like any other self-adhesive band-aid, but changes color to indicate infection by reacting to the pH of the skin beneath. Healthy healing wounds have a pH of about five or six. If this gets too alkaline, that can mean there’s an infection brewing underneath. The bandage will turn purple between 6.5 and 8.5 pH.   Another team from South Korea, Germany, and the US represented by Dr. Conor Evans from the Wellman Center for Photomedicine took a different tack: Liquid bandages funded in part by the Department of Defense. These can also clearly indicate wound healing, but not by detecting pH. The liquid bandage is designed to map oxygen concentrations in skin, including burns. In case you didn’t know, blood supply rich with oxygen and glucose is integral to wound healing. A deficit can result in poor recovery and chronic sores.   Current wound assessment is limited to the sniff test, visual inspection, or electrochemical analysis, which requires sticking electrodes (like needles) into the wound. The latter sounds like a miserable process for patients. A less invasive measurement option is available if you have the equipment to trace radioactive markers, but positron emission tomographs are pricey and not widely available.   For full story Click here
Newswise — Jan. 22, 2016─A diet rich in fiber may not only protect against diabetes and heart disease, it may reduce the risk of developing lung disease, according to new research published online, ahead of print in the Annals of the American Thoracic Society. Analyzing data from the National Health and Nutrition Examination Surveys, researchers report in “The Relationship between Dietary Fiber Intake and Lung Function in NHANES,” that among adults in the top quartile of fiber intake: • 68.3 percent had normal lung function, compared to 50.1 percent in the bottom quartile. • 14. 8 percent had airway restriction, compared to 29.8 percent in the bottom quartile.In two important breathing tests, those with the highest fiber intake also performed significantly better than those with the lowest intake. Those in the top quartile had a greater lung capacity (FVC) and could exhale more air in one second (FEV1) than those in the lowest quartile. “Lung disease is an important public health problem, so it’s important to identify modifiable risk factors for prevention,” said lead author Corrine Hanson PhD, RD, an associate professor of medical nutrition at the University of Nebraska Medical Center. “However, beyond smoking very few preventative strategies have been identified. Increasing fiber intake may be a practical and effective way for people to have an impact on their risk of lung disease.” Researchers reviewed records of 1,921 adults, ages 40 to 79, who participated in NHANES during 2009-2010. Administered by the Centers for Disease Control and Prevention, NHANES is unique in that it combines interviews with physical examinations. Fiber consumption was calculated based on the amount of fruits, vegetables, legumes and whole grains participants recalled eating. Those whose diets included more than 17.5 grams of fiber a day were in the top quartile and represented the largest number of participants, 571. Those getting less than 10.75 grams of fiber a day were in the lower group and represented the smallest number of participants, 360. Researchers adjusted for a number of demographic and health factors, including smoking, weight and socioeconomic status, and found an independent association between fiber and lung function. They did not adjust for physical activity, nor did the NHANES data allow them to analyze fiber intake and lung function over time—limitations acknowledged by the authors. Authors cited previous research that may explain the beneficial effects of fiber they observed. Other studies have shown that fiber reduces inflammation in the body, and the authors noted that inflammation underlies many lung diseases. Other studies have also shown that fiber changes the composition of the gut microbiome, and the authors said this may in turn reduce infections and release natural lung-protective chemicals to the body. If further studies confirm the findings of this report, Hanson believes that public health campaigns may one day “target diet and fiber as safe and inexpensive ways of preventing lung disease.” To read the article in full, please visit: http://www.thoracic.org/about/newsroom/press-releases/resources/White-201509-609OC.PDF
Newswise — DURHAM, N.C. -- Doctors at the Duke University School of Medicine have tested a new injectable agent that causes cancer cells in a tumor to fluoresce, potentially increasing a surgeon’s ability to locate and remove all of a cancerous tumor on the first attempt. The imaging technology was developed through collaboration with scientists at Duke, the Massachusetts Institute of Technology (MIT) and Lumicell Inc. According to findings published January 6 in Science Translational Medicine, a trial at Duke University Medical Center in 15 patients undergoing surgery for soft-tissue sarcoma or breast cancer found that the injectable agent, a blue liquid called LUM015 (loom – fifteen), identified cancerous tissue in human patients without adverse effects. Cancer surgeons currently rely on cross-sectional imaging such as MRIs and CT scans to guide them as they remove a tumor and its surrounding tissue. But in many cases some cancerous tissue around the tumor is undetected and remains in the patient, sometimes requiring a second surgery and radiation therapy. “At the time of surgery, a pathologist can examine the tissue for cancer cells at the edge of the tumor using a microscope, but because of the size of cancer it’s impossible to review the entire surface during surgery,” said senior author David Kirsch, M.D., Ph.D., a professor of radiation oncology and pharmacology and cancer biology at Duke University School of Medicine. “The goal is to give surgeons a practical and quick technology that allows them to scan the tumor bed during surgery to look for any residual fluorescence.” Researchers around the globe are pursuing techniques to help surgeons better visualize cancer, some using a similar mechanism as LUM015, which is activated by enzymes. But the Duke trial described in the journal is the first protease-activated imaging agent for cancer that has been tested for safety in humans, Kirsch said. LUM015 was developed by Lumicell, a company started by researchers at MIT and involving Kirsch. In companion experiments in mice described in the journal, LUM015 accumulated in tumors where it creates fluorescence in tumor tissue that is on average five times brighter than regular muscle. The resulting signals aren’t visible to the naked eye and must be detected by a handheld imaging device with a sensitive camera, which Lumicell is also developing, Kirsch said. In the operating room after a tumor is removed, surgeons would place the handheld imaging device on the cut surface. The device would alert them to areas with fluorescent cancer cells. Going into surgery, the goal is always to remove 100 percent of the tumor, plus a margin of normal tissue around the edges, explained senior author Brian Brigman, M.D., Ph.D., chief of orthopedic oncology at Duke. Pathologists then analyze the margins over several days and determine whether they are clear. “This pathologic technique to determine whether tumor remains in the patient is the best system we have currently, and has been in use for decades, but it’s not as accurate as we would like,” said Brigman, who is also the director of the sarcoma program at the Duke Cancer Institute. “If this technology is successful in subsequent trials, it would significantly change our treatment of sarcoma. If we can increase the cases where 100 percent of the tumor is removed, we could prevent subsequent operations and potentially cancer recurrence. Knowing where there is residual disease can also guide radiation therapy, or even reduce how much radiation a patient will receive.” Researchers at Massachusetts General Hospital are currently evaluating the safety and efficacy of LUM015 and the Lumicell imaging device in a prospective study of 50 women with breast cancer. Afterward, Kirsch said, multiple institutions would likely evaluate whether the technology can decrease the number of patients needing subsequent operations following initial breast cancer removal. In addition to Kirsch and Brigman, study authors include Melodi Javid Whitley, Diana M. Cardona, Alexander L. Lazarides, Ivan Spasojevic, Jorge M. Ferrer, Joan Cahill, Chang-Lung Lee, Matija Snuderl, Dan G. Blazer III, E. Shelley Hwang, Rachel A. Greenup, Paul J. Mosca, Jeffrey K. Mito, Kyle C. Cuneo, Nicole A. Larrier, Erin K. O’Reilly, Richard F. Riedel, William C. Eward, David B. Strasfeld, Dai Fukumura, Rakesh K. Jain, W. David Lee, Linda G. Griffith and Moungi G. Bawendi. Duke author Kirsch and MIT authors Griffith, Bawendi, Ferrer and W. David Lee hold interest in or are involved with Lumicell Inc., a company commercializing LUM015 and the imaging system. Duke and MIT hold a patent on the imaging device technology. More detailed conflict-of-interest information is included in the manuscript published by Science Translational Medicine. The study was funded in part by an American Society of Clinical Oncology Advanced Clinical Research Award to Kirsch, the National Institutes of Health (NIH) (T32GM007171), a National Cancer Institute Small Business Innovation Research award to Lumicell Inc. (1U43CA165024), the NIH National Center for Advancing Translational Science (UL1TR001117), and Duke Comprehensive Cancer Center Support (5P30-CA-014236-38). Lumicell Inc. provided the imaging agents.
Newswise — A microencapsulation method, developed by OIST researchers, can help to overcome major challenges in pancreatic islet transplantation. Diabetes is one of the leading causes of death. Patients with type 1 diabetes have their insulin secreting cells destroyed by the immune system and require daily insulin injections. Pancreatic islet transplantation is an effective treatment that can dramatically reduce daily doses or even eliminate dependence on external insulin. Insulin producing cells are injected into a recipient liver. After an adaptation period they start to produce sufficient hormone needed by diabetic patients. However, while the transplantation procedure itself has been greatly improved in recent years, collection, preservation, and transportation of these cells are still very challenging. Research published in Advanced Healthcare Materials by the scientists from the Okinawa Institute of Technology and Science Graduate University (OIST) in collaboration with the University of Washington and Wuhan University of Technology offers a solution for some of these problems. Production and secretion of insulin occur in the pancreas — an endocrine gland in the digestive system. Cells secreting insulin are clustered in pancreatic islets. Despite their crucial role in organismal wellbeing these islets comprise only a few percent of the pancreatic tissue. The islet transplantation does not require major surgical intervention and is often done under local anaesthesia. It is also cheaper and might be safer than transplantation of the entire pancreas. Unfortunately, so far, only human islets can be transplanted and their supply is but a trickle. Cryopreservation, or deep freezing, is the method commonly used for the islet preservation and transportation. But it is not completely safe. One might think that storage at temperatures below -190°C is the most dangerous phase. However, the cells are very good at enduring it. It is the freezing process (-15 to -60°C) itself that poses the most challenges. As the cells are cooled, water in and around them freezes. Ice crystals have sharp edges that can pierce membranes and compromise cell viability. This also becomes problematic during thawing. A multidisciplinary group of researchers led by Prof. Amy Shen, head of the Micro/Bio/Nanofluidics Unit at OIST, developed a novel cryopreservation method that not only helps to protect pancreatic islets from ice damage, but also facilitates real-time assessments of cell viability. Moreover, this method may reduce transplant rejection and, in turn, decrease use of immunosuppressant drugs, which can be harmful to patient health. The novel technique employs a droplet microfluidic device to encapsulate pancreatic islets in hydrogel made of alginate, a natural polymer extracted from seaweed. These capsules have a unique microstructure: a porous network and considerable amount of non-freezable water. There are three types of water in the hydrogel: free water, freezable bound water, and non-freezable bound water. Free water is regular water: it freezes at 0°C, producing ice crystals. Freezable bound water also crystallises, but the freezing point is lower. Non-freezable bound water does not form ice due to the strong association between water molecules and the hydrogel networks. Hydrogel capsules with large amounts of non-freezable bound water protect the cells from the ice damage and reduce the need for cryoprotectants — special substances that minimise or prevent freezing damage and can be toxic in high concentrations. Another innovation, proposed by the group, is the use of a fluorescent oxygen-sensitive dye in hydrogel capsules. The porous structure of the capsules does not impede oxygen flow to the cells. And this dye functions as a real-time single-islet oxygen sensor. Fluorescence indicates whether cells are consuming oxygen and, therefore, are alive and healthy. It is a simple, time-efficient, and cheap method of assessing viability, both of individual islets or populations thereof. Islet encapsulation reduces the risk of rejection of transplanted cells by the recipient. The hydrogel capsule allows small molecules, e.g. nutrients and islet secretions, to pass through the membrane easily, but prevents direct contact between implanted islets and host cells. Encapsulation also may prevent an attack on transplants by the autoimmune response that destroyed the patient’s own islets in the first place. The microencapsulation method can help to overcome some major challenges in pancreatic islet transplantation, including the scarcity of available islets and the lack of simple and reliable control methods, especially for individual islet assessment. It offers hope to patients suffering from type 1 diabetes to return to a “normal” life, free of insulin injections. http://www.oist.jp/news-center/news/2015/12/25/seaweed-capsules-may-lead-injection-free-life-diabetic-patients
Newswise — How should a concerned mother discuss issues of diet and weight with her daughter? Very carefully, according to Erin Hillard, a developmental psychology doctoral student at the University of Notre Dame. In an article recently published in the journal Body Image, Hillard and her colleagues, fellow Notre Dame psychology graduate student Rebecca A. Morrissey, and Notre Dame faculty members Dawn M. Gondoli, associate professor of psychology, and Alexandra F. Corning, research associate professor of psychology, reported on results from their study of a representative group of sixth- through eighth-grade girls and their mothers. “Generally, we found that for the daughters who were being encouraged to lose weight by their mothers, outcomes were worse if their mothers were not also discussing their own weight concerns,” Hillard said. “The daughters who were being encouraged to lose weight but whose moms were not also discussing their own weight concerns were more at risk for development of disordered eating, based on the higher scores on measures of dieting behavior and drive for thinness they reported in eighth grade.” Hillard acknowledged that the study findings as a whole suggested more about what mothers should not be talking about than what they should. “After all,” she said, “the best outcomes were found for daughters whose mothers were not engaging in either type of conversation. They do shed light on the complexity of the issue of talking to children about their weight in ways that don’t lead to poor health outcomes in the long run.”  
Newswise — Stony Brook, NY, Embargoed Until 1 PM, EST; December 16, 2015 – A team of researchers from Stony Brook University, led by Yusuf Hannun, MD, the Joel Strum Kenny Professor in Cancer Research and Director of the Stony Brook University Cancer Center, have found quantitative evidence proving that extrinsic risk factors, such as environmental exposures and behaviors weigh heavily on the development of a vast majority (approximately 70 to 90 percent) of cancers. The finding, reported in the December 16 online issue of Nature, in a paper titled “Substantial contribution of extrinsic risk factors to cancer development,” may be important for strategizing cancer prevention, research and public health. Inspired by a January 2015 research paper in Science, which concluded that the majority of the variation in cancer risk among tissues is due to “bad luck,” the Stony Brook team used the same data to assess what leads to the risk of developing cancer. The interdisciplinary team of researchers from the Departments of Applied Mathematics and Statistics, Medicine, Pathology and Biochemistry, concluded the opposite – that most cancers are the result of external risk factors. “Cancer is caused by mutations in the DNA of cells, which leads to uncontrolled cell growth instead of orderly growth. But the development of cancer is a complex issue, and we as a scientific community need to have solid analytical models to investigate what intrinsic and extrinsic factors cause certain forms of cancer,” said Dr. Hannun, senior author of the paper. “Many scientists argued against the ‘bad luck’ or ‘random mutation’ theory of cancer but provided no alternative analysis to quantify the contribution of external risk factors,” explained Song Wu, PhD, lead author of the paper, and Assistant Professor in the Department of Applied Mathematics and Statistics, Stony Brook University. “Our paper provides an alternative analysis by applying four distinct analytic approaches.” They developed four distinct approaches to assess cancer risk. With these four approaches, they discovered collectively and individually that most cancers are attributed largely to external risk factors, with only 10-to-30 percent attributed to random mutations, or intrinsic factors. First, the researchers examined extrinsic risks by tissue cell turnover. In a data-driven approach, they re-examined the quantitative relationship between observed lifetime risk of cancer (ie, for lung, pancreatic, colorectal and other tissues) and division of the normal tissue stem cells in those groups reported in the Science paper. If intrinsic risk factors played a major role, the tissue with the similar stem cell divisions would show similar observed lifetime cancer risk. They found this pattern to be a rare one, and thus determined intrinsic factors played a vital role in only about 10 percent of cancers. These results are supported by strong epidemiologic evidence; for example studies showing that immigrants moving from countries with lower cancer incidence to countries with higher rates of cancer incidence acquire the higher risk in their new country. The researchers also mathematically surveyed and analyzed recent studies on mutational signatures in cancer, which are regarded as “fingerprints” left on cancer genomes by different mutagenic processes. Some 30 distinct signatures among various cancers were identified. They analyzed the signatures and categorized them as having intrinsic or extrinsic origins. They found that while a few forms of cancer had a greater than 50 percent of intrinsic mutations, the majority of cancers, such as colorectal, lung, bladder and thyroid cancers had large proportions of mutations likely caused by extrinsic factors. The team also analyzed the SEER (Surveillance, Epidemiologic and End Results Program) data, which showed that many cancers have been increasing in incidence and in mortality, suggesting that external factors contribute heavily to these cancers. Lastly, they used computational modeling to dissect the contribution of the intrinsic processes in the development of cancer, based on known gene mutations in cancer and the likelihood that they arise from intrinsic mutation rates. They found that when three or more mutations are required for cancer onset (which is a currently accepted parameter), intrinsic factors are far from sufficient to account for the observed risks, indicating small percentages of intrinsic cancer risks in many cancers. The four methods involved both data- and model-driven quantitative analyses, with and without using the stem cell estimations. The idea behind the overall approach was to assess cancer risk by multiple methods and not by a single type of analysis. Dr. Hannun concluded that their overall approach “provides a new framework to quantify the lifetime cancer risks from both intrinsic and extrinsic factors, which will have important consequences for strategizing cancer prevention, research and public health.” Co-authors of the paper include: Scott Powers of the Department of Pathology at Stony Brook University, and Wei Zhu, of the Department of Applied Mathematics and Statistics at Stony Brook University. All of the authors are collaborating investigators at the Stony Brook University Cancer Center. ###About Stony Brook University Part of the State University of New York system, Stony Brook University encompasses 200 buildings on 1,450 acres. Since welcoming its first incoming class in 1957, the University has grown tremendously, now with more than 25,000 students and 2,500 faculty. Its membership in the prestigious Association of American Universities (AAU) places Stony Brook among the top 62 research institutions in North America. U.S. News & World Report ranks Stony Brook among the top 100 universities in the nation and top 40 public universities, and Kiplinger names it one of the 35 best values in public colleges. One of four University Center campuses in the SUNY system, Stony Brook co-manages Brookhaven National Laboratory, putting it in an elite group of universities that run federal research and development laboratories. A global ranking by U.S. News & World Report places Stony Brook in the top 1 percent of institutions worldwide. It is one of only 10 universities nationwide recognized by the National Science Foundation for combining research with undergraduate education. As the largest single-site employer on Long Island, Stony Brook is a driving force of the regional economy, with an annual economic impact of $4.65 billion, generating nearly 60,000 jobs, and accounts for nearly 4 percent of all economic activity in Nassau and Suffolk counties, and roughly 7.5 percent of total jobs in Suffolk County. Greg FilianoMedia Relations ManagerSchool of MedicineStony Brook UniversityOffice of Communications and Marketing631-444-9343Gregory.filiano@stonybrookmedicine.edu
Newswise — Women with apple-shaped bodies – those who store more of their fat in their trunk and abdominal regions – may be at particular risk for the development of eating episodes during which they experience a sense of “loss of control,” according to a new study from Drexel University. The study also found that women with greater fat stores in their midsections reported being less satisfied with their bodies, which may contribute to loss-of-control eating. This study marks the first investigation of the connections between fat distribution, body image disturbance and the development of disordered eating. “Eating disorders that are detected early are much more likely to be successfully treated. Although existing eating disorder risk models comprehensively address psychological factors, we know of very few biologically-based factors that help us predict who may be more likely to develop eating disorder behaviors,” said lead author Laura Berner, PhD, who completed the research while pursuing a doctoral degree at Drexel. “Our preliminary findings reveal that centralized fat distribution may be an important risk factor for the development of eating disturbance, specifically for loss-of-control eating,” said Berner. “This suggests that targeting individuals who store more of their fat in the midsection and adapting psychological interventions to focus specifically on body fat distribution could be beneficial for preventing eating disorders. The study, titled “Examination of Central Body Fat Deposition as a Risk Factor for Loss-of-Control Eating,” was published in the American Journal of Clinical Nutrition. Berner is now a postdoctoral research fellow at the Eating Disorders Center for Treatment and Research at UC San Diego Health. Michael R. Lowe, PhD, a professor in Drexel’s College of Arts and Sciences, was a co-author, along with Danielle Arigo, PhD, who was a postdoctoral research fellow at Drexel and is now an assistant professor of psychology at the University of Scranton; Laurel Mayer, MD, associate professor of clinical psychiatry at the Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute,; and David B. Sarwer, PhD, professor of psychology in Psychiatry and Surgery at the Perelman School of Medicine at the University of Pennsylvania as well as director of clinical services at the Center for Weight and Eating Disorders. Mounting evidence suggests that experiencing a sense of loss-of-control during eating – feeling driven or compelled to keep eating or that stopping once one has started is difficult – is the most significant element of binge-eating episodes regardless of how much food is consumed, according to the researchers. “This sense of loss of control is experienced across a range of eating disorder diagnoses: bulimia nervosa, binge eating disorder and the binge-eating/purging subtype of anorexia nervosa,” said Berner. “We wanted to see if a measurable biological characteristic could help predict who goes on to develop this feeling, as research shows that individuals who feel this sense of loss of control over eating but don’t yet have an eating disorder are more likely to develop one.” “This sense of loss of control is experienced across a range of eating disorder diagnoses: bulimia nervosa, binge eating disorder and the binge-eating/purging subtype of anorexia nervosa,” said Berner. “We wanted to see if a measurable biological characteristic could help predict who goes on to develop this feeling, as research shows that individuals who feel this sense of loss of control over eating but don’t yet have an eating disorder are more likely to develop one." Using a large dataset that followed female college freshman for two years, the researchers preliminarily investigated whether body fat distribution is linked to body dissatisfaction over time and increases risk for the development or worsening of loss-of-control eating. The nearly 300 young adult women completed assessments at baseline, six months and 24 months, that looked at height, weight and total body fat percentage and where it’s distributed. Participants, none of whom met the diagnostic criteria for eating disorders at the start of the study, were assessed for disordered eating behaviors through standardized clinical interviews in which experiences of sense of loss of control were self-reported. In this sample, the researchers found that women with greater central fat stores, independent of total body mass and depression levels, were more likely to develop loss-of-control eating and demonstrated steadier increases in loss-of-control eating episode frequency over time. Women with a larger percentage of their body fat stored in the trunk region were also less satisfied with their bodies, regardless of their total weight or depression level. The findings indicate that storage of body fat in trunk and abdominal regions, rather than elsewhere in the body, is more strongly predictive of loss-of-control eating development and worsening over time, and that larger percentages of fat stored in these central regions and body dissatisfaction may serve as maintenance or exacerbation for loss-of-control eating. “Our results suggest that centralized fat deposition increased disordered eating risk above and beyond other known risk factors,” said Berner. “The specificity of our findings to centralized fat deposition was also surprising. For example, a one-unit increase in the percentage of body fat stored in the abdominal region was associated with a 53 percent increase in the risk of developing loss-of-control eating over the next two years, whereas total percentage body fat did not predict loss-of-control eating development.” According to Berner, more research is needed to explain the mechanism behind these findings, though she speculates that there are a number of reasons why this might happen. “It’s possible that this kind of fat distribution is not only psychologically distressing, but biologically influential through, for example, alterations in hunger and satiety signaling,” she said. “Fat cells release signals to the brain that influence how hungry or satiated we feel. Our study didn’t include hormone assays, so we can’t know for sure, but in theory it’s possible that if a centralized distribution of fat alters the hunger and satiety messages it sends, it could make a person feel out of control while eating.” The findings may apply to other disordered eating behaviors beyond loss-of-control eating, but more research is needed. “Body fat distribution hasn’t been studied in disorders characterized by binge-eating behaviors as much as it has in anorexia nervosa,” said Berner. “The participants in our sample didn’t develop eating disorder diagnoses within the two year period that we studied them, but this study suggests that future research should investigate whether individuals with greater central fat stores are more likely to develop bulimia nervosa and binge eating disorder."
Newswise — ANN ARBOR, Mich. — If you don’t have health insurance, or your insurance coverage still leaves you with big bills, hospitals are supposed to let you know if you qualify for free or reduced-price care, and to charge you fairly even if you don’t. That is, if they want to keep their tax-free nonprofit status under the Affordable Care Act’s new Section 501(r) rules. But a new study from the University of Michigan Institute for Healthcare Policy and Innovation finds many nonprofit hospitals have room to improve. Writing in the October 29 issue of the New England Journal of Medicine, the researchers report results from their review of Internal Revenue Service forms submitted by more than 1,800 nonprofit hospitals nationally. They looked at records for 2012, the first year hospitals had to comply with the ACA’s requirements and the most recent year for which data were available. A mixed bag of findings IHPI post-doctoral fellow Sayeh Nikpay, Ph.D., MPH and IHPI director John Z. Ayanian, M.D., MPP, call hospitals’ performance “far from perfect”. Their key findings: • Nearly all (94 percent) of the hospitals reported having a written charity care and emergency care policies, to guide them on deciding which patients could get free or reduced-price care. Though the ACA doesn’t tell hospitals which patients to offer discounts to, or how generous to be, it does say they must have such policies and make them known. • Only 29 percent of the hospitals reported they had begun charging uninsured and under-insured patients the same rate that they charged private insurers or Medicare. Such rates are often far lower than the “chargemaster” rates hospitals set as the starting point for negotiating with insurers about how much they will actually accept. • Only 42 percent of the hospitals reported they were notifying patients about their potential eligibility for charity care before attempting to collect unpaid medical bills. The ACA requires such notifications to give patients a chance to apply to get some or all of their costs written off. • One in five hospitals had not yet stopped using extraordinary debt-collection steps when patients failed to pay their medical bills. Such steps, such as reporting patients to credit agencies in ways that can damage their credit scores, placing liens on their property or garnishing their wages, are now banned. • Hospitals in states that have not expanded Medicaid reported having less generous charity care policies, and were less likely to have a policy about notifying patients of charity care options before they left the hospital. In general, patients have to be poorer to get free or discounted care in these states than in states that have expanded Medicaid. • Only 11 percent of hospitals reported having conducted a community health needs assessment in the past three years as of 2012. Such assessments, to identify pressing health issues in the population they serve, don’t necessarily affect charity care. Playing by the rules? Nonprofit hospitals are exempt from paying most taxes, which was valued at $24.6 billion in 2011. In return, they must justify their nonprofit status to the IRS each year by showing how much care they write off for those who cannot pay. When Congress wrote the ACA, they sought to use the tax tools available to them to reduce hospitals’ use of aggressive methods to pursue payment, and perhaps to prevent individual bankruptcies or credit score damage caused by medical bills. Though hospitals had to report for tax year 2012, the federal government did not issue final language about exactly how to comply and penalties for non-compliance until 2014. Nikpay and Ayanian will continue to study the issue as new IRS data become available. They are already working on 2013 data. “Hospitals are generally complying with the part of the rules that require they establish charity care policies and publicize them, but this may not impact the amount of charity care they provide,” says Nikpay, who is also a visiting scholar at the University of California, Berkeley. “So far, it appears many aren’t complying with the part of the rules that could increase their charity care.” Ayanian, a professor at the U-M Medical School with joint appointments in public policy and public health, says physicians and patients should familiarize themselves with policies at their hospitals. “Financial protection for patients is an under-recognized component of the ACA, and it’s important that hospitals are required to have policies, that they disclose these policies, and that they enable people to apply for help in a timely way,” he says. “This will be most important for patients living in states that have not expanded Medicaid to cover people with lower incomes. Hospitals in those states will likely experience additional demand for charity care because they now need to publicize their charity care policies and comply with other IRS provisions.” With these added requirements, hospitals may start to pull back on how generous they make their charity care policies – and Section 501(r) of the ACA does not set standards for that, Nikpay notes. As more Americans enroll in insurance plans that have high deductibles, they may find they need to ask for financial relief after a hospital stay. Even a single person earning $40,000 a year, or a family of four with an income of $80,000, might qualify for discounted care from many hospitals. Reference: New England Journal of Medicine, DOI: 10.1056/NEJMp1508605
Newswise — Women need to maintain good health years before they become pregnant. After all, healthy women are most likely to give birth to healthy babies. A web-based app, www.healthymomshra.com, can now help women gauge the level of their health and learn what changes they can make to enhance not only their own wellbeing, but also the health of any babies born to them in the future. “Our goal with the app is to encourage good health practices in women so they will be healthy for pregnancies, planned or unplanned,” said Adam T. Perzynski, PhD (Twitter: @ATPerzynski), director of the Patient Centered Medical Lab, and a sociologist with the Case Western Reserve University School of Medicine and MetroHealth Center for Health Care Research and Policy team, that developed the Healthy Moms Health Risk Assessment prototype at www.healthymomshra.com. Much infant mortality can be traced to low birth weight or early gestational birth age of newborns, which is often related to the poor health of the mother. The developers of the web-based app sought to help women reverse the major risk factors that negatively affect them in the categories of health habits, social support, driving safety, substance use, tobacco use, mental health, physical health, environmental risks, ethnicity, age and neighborhood of residence. The online Healthy Moms Health Risk Assessment features a user-friendly test where each question, regardless of a yes or no answer, is greeted with encouraging, helpful tips across the categories of health risks. All answers are based on Centers for Disease Control and Prevention (CDC) guidelines firmly grounded in scientific evidence. The test concludes with a report of the woman’s individual health risk in the categories. The report is color coded from green to red, so the more green the report, the better the test-taker’s health. “The main difference with this app is that it focuses on the preconception phase rather than exclusively on pregnant women,” Perzynski said. “Up to 50 percent of pregnancies are unplanned, so it’s important that a woman engage in healthy behaviors to prepare for the fact that she might become pregnant at some point.” Armed with latest wellness information from CDC for women, the Case Western Reserve team used flexible and scalable cloud-based computing environment to develop an app that would provide immediate, useful answers and offer a summary scorecard. The Healthy Moms Health Risk Assessment app was so impressive that it won an honorable mention at the recent Cleveland Medical Hackathon competition where the Case Western Reserve team vied with other teams to develop the best innovation to address an unmet health care need. “In many cases, mothers have health issues before they become pregnant, and those health issues can be challenging to resolve once they are pregnant,” Perzynski said. “We tailored our app to help women consider how health behaviors, activities and social circumstances might affect the health of a baby should a pregnancy happen, with the goal of empowering women to make healthy choices.”