News

As Americans are managing life with the Coronavirus, the travel industry is continuing to come back.  Hotels and travel destinations in many parts of the country are open in anticipation of travelers ready to throw off their cabin fever and venture out.  Your plans may be for a weekend get away to a cozy bed and breakfast, or perhaps a fishing trip to catch that “big one” that won’t get away this time. Maybe it’s a camping trip full of hiking adventures with stunning vistas, or possibly you would rather walk through America’s glorious past by taking in all the amenities offered in any of hundreds of museums?  How about a week’s stay at a ranch out west?  Whatever your travel desires are, your options are plentiful and, more importantly, clean, safe and following all CDC guidelines for Coronavirus.  Each week we will list state by state travel options we recommend to help make your vacation choices easy.   ALASKA: Almost Home Vacation Rentals – Ketchikan. Long term accommodations for hospital and medical staff as well as military personnel.   ARKANSAS: Stetsons on the White – Flippin.   CALIFORNIA: Northern California Veteran’s Museum & Heritage Center – Anderson. Glorietta Bay Inn – Coronado Island. Heavenly Valley Lodge – South Lake Tahoe.   COLORADO: Annie’s Mountain Retreat – Estes Park.   FLORIDA: The Historic Edgewater Hotel – Winter Garden. Navarre Beach Camping Resort – Navarre. Anchor Inn Bed & Breakfast – New Smyrna Beach.   GEORGIA: National Civil War Naval Museum – Columbus.   ILLINOIS: Laury’s Bakery & Cake – Oak Park.   INDIANA: Camp Kay Outfitters –Monticello. They also have hunts in OHIO & MAINE. Hidden Paradise Campground –St. Paul.   IOWA: Inn of the Six-Toed Cat –Allerton.   KENTUCKY: Oh! Kentucky RV Park & Campground – Berea. Candlewood Suites – Oak Grove. Gumz Hunt Club – Henderson. Westgate RV Campground – London. Main Street Bed & Breakfast – Glassgow.   LOUISIANA: La Quinta Inn – Slidell/New Orleans.   Evangeline Parish Tourism – Ville Platte.     MAINE: Freeport KOA Campground – Durham.   MARYLAND: Eden Park Guest House – Takoma Park.   MICHIGAN: Saugatuck Cabins – Saugatuck. King Copper Motel – Copper Harbor.   MISSOURI: Eminence Cottages & Camp – Eminence.   MONTANA: Montana River Lodge – Superior.   NEBRASKA: Gobble-N-Hunt Outfitters – Genoa. Turkey, Prairie Chicken, Deer, Buffalo and Predator hunts. Enders Lake Golf Course and RV Park – Enders.   NEW MEXICO: Western Heritage Museum & Lea County Cowboy Hall of Fame – Hobbs.   KOA Campground – Raton. Ghost Ranch Education & Retreat Center – Abiquiu.   OHIO: Kokosing River Outfitters – Howard.   OREGON: Tillamook Air Museum – Tillamook.   PENNSYLVANIA: Flory’s Cottages & Camping – Lancaster County.   TENNESSEE: Kentucky Lake Cabins – Springville. Appleview River Resort – Pigeon Forge. Best Western Plus Atrium – Clarksville. Green Acres RV Resort – Savannah. Pine Mountain RV Park – Pigeon Forge.   TEXAS: Brownsville Historical Association – Brownsville.   VERMONT: Arcady Mountain Motor Lodge – Sunderland. Uncle Jammer’s Guide Service – St. Albans.   VIRGINIA: Carlyle House Historic Park – Alexandria.   WASHINGTON: Kenanna RV Park – Grayland.   WISCONSIN: Baraboo Chamber of Commerce – Baraboo. Shopping, dining, state parks, wineries, lodging and more. New Glarus Hotel – New Glarus. Edgewater Resort & Condominiums – Door County. Wisconsin Maritime Museum – Manitowoc.   WYOMING: Bearlodge Mountain Resort – Sundance.   When you are ready to travel, we are here to help!  Keep checking back every week for more featured locations.  Our travel hosts are eager to see you and work with you to provide safe and clean facilities.   SCHOOL: Once rested and relaxed, come back and look into a new career with National Personal Training Institute with multiple locations including Chicago, IL, Rochester Hills, MI, Lyndhurst, NJ and Philadelphia, PA.
Newswise — Taking into account two common kidney disease tests may greatly enhance doctors’ abilities to estimate patients’ cardiovascular disease risks, enabling millions of patients to have better preventive cardiovascular care, according to a large international study co-led by researchers at the Johns Hopkins Bloomberg School of Public Health. The researchers used data from more than nine million individuals around the world to develop and validate a risk-scoring calculation that adds blood and urine measures of kidney disease to the current standard method in the United States for assessing cardiovascular disease risk. The two measures—estimated glomerular filtration rate and urine albumin—are commonly used to reveal chronic kidney disease. CKD, as it’s called, has long been considered a risk factor for cardiovascular disease, although until now CKD-related measures have not been included in standard algorithms for quantifying cardiovascular disease risk. The researchers showed that the use of their “CKD patch”—a computer-program update—can result in large increases in cardiovascular disease-risk estimates among patients with severe CKD. The investigators also developed a similar patch to enhance the standard risk-assessment tool used in Europe. The study appears October 14 in EClinicalMedicine, a new online open-access journal published by The Lancet. “Adding these two measures of kidney disease, which are frequently available from blood and urine tests at checkups, allows potentially big improvements in the accuracy of a patient’s risk estimates—improvements that should in turn enable doctors to optimize patient care,” says study co-first author Kunihiro Matsushita, MD, an associate professor in the Bloomberg School’s Department of Epidemiology. “This is a big deal—an estimated ten percent of the United States adult population has kidney disease and potentially would benefit from improved care if this new tool is adopted,” says co-last author Josef Coresh, MD, George W. Comstock Professor in the Department of Epidemiology at the Bloomberg School. The other co-first author was Simerjot Jassal, MD, of the University of California, San Diego, and the other co-last author was Elke Schaeffner, MD, of Charité University Hospital Berlin. Shoshana Ballew, PhD, assistant scientist in the Bloomberg School’s Department of Epidemiology, helped coordinate the data-gathering. In all, the study included more than 50 researchers. The reduction of kidney function in CKD can lead to higher blood pressure as well as hormonal and other chemical imbalances, and these in turn promote the narrowing of arteries that supply the heart muscle—conditions known as atherosclerosis and arteriolosclerosis. The American Heart Association and the American College of Cardiology, in their guidelines for physicians, already list CKD as a “risk enhancer” for atherosclerotic cardiovascular disease, but without a specific tool that quantifies the added risk as part of the standard risk calculator. Since 2009, Coresh, Matsushita, and colleagues have been assembling a large, international database of CKD patients and healthy adults, under a collaboration known as the CKD Prognosis Consortium. For the new study, they analyzed a portion of this database, covering 4.1 million adults around the world, to develop algorithms that estimate cardiovascular disease risk using standard measures plus the two kidney-disease measures. They then validated the accuracy of their algorithms using further samples covering 4.9 million adults. The two kidney disease measures, estimated glomerular filtration rate and urine albumin, respectively, indicate the kidneys’ blood-filtering efficiency and the level of an essential protein called albumin that the kidneys normally would filter out of the urine. The researchers incorporated these measures in a “CKD patch” to the standard cardiovascular disease-risk estimation algorithm developed by the American Heart Association and the American College of Cardiology. They found that for adults who had results on these kidney- disease tests indicating CKD, the addition of these measures via the CKD patch significantly improved the estimated 10-year risks of atherosclerotic cardiovascular disease. For example, for patients with “very high-risk” CKD, the estimated 10-year chances of developing atherosclerotic cardiovascular disease were a median of 1.55 times higher than estimates without the CKD patch, while the figures were a median of 1.24 times higher for “high-risk” CKD patients. The researchers’ CKD patch for the standard European 10-year cardiovascular disease mortality risk estimator also boosted estimated risks, by a median of 2.64 times in very high-risk CKD patients, and 1.86 times in high-risk CKD patients. “These results suggest that doctors have tended to underestimate cardiovascular disease risks in kidney disease patients,” Matsushita says. The researchers hope that their CKD patches will be adopted widely, enabling more accurate assessments of cardiovascular disease and related mortality risks—which in turn should result in better preventive care including the use of statins and other interventions to ward off cardiovascular disease. “We also hope that the availability and value of these new algorithms will encourage doctors to order estimated glomerular filtration rate and urine albumin tests for their patients more often,” Coresh says. The CKD patches are available online at: http://ckdpcrisk.org/ckdpatchscore/ and http://www.ckdpcrisk.org/ckdpatchpce/ The study, “Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets,” was funded by the National Kidney Foundation and the National Institute of Diabetes and Digestive and Kidney Diseases.
Newswise — Without directly invading the brain or nerves, the virus responsible for COVID-19 causes potentially damaging neurological injuries in about one in seven infected, a new study shows. These injuries range from temporary confusion due to low body-oxygen levels, to stroke and seizures in the most serious cases, say the study authors.  Led by researchers at NYU Grossman School of Medicine, the study showed no cases of brain or nerve inflammation (meningitis or encephalitis), indicating no immediate invasion of these organs by the pandemic virus, SARS-CoV-2.  While this should reassure patients, the neurological complications of COVID-19 should be taken seriously because they dramatically raise a patient’s risk of dying while still in hospital (by 38 percent), researchers say. Such adverse effects also raise a coronavirus patient’s likelihood (by 28 percent) of needing long-term or rehabilitation therapy immediately after their stay in hospital.  “The results of our study showed no signs that the coronavirus directly attacks the nervous system,” says study lead investigator Jennifer Frontera, MD. “The neurological complications seen in COVID-19 are predominately the secondary effects of being severely ill and suffering from low oxygen levels in the body for prolonged periods of time,” says Frontera, a professor in the Department of Neurology at NYU Langone Health.  Published in the journal Neurology online Oct. 5, the study closely monitored the progress of 606 COVID-19 adult patients diagnosed with brain or other nerve-related medical conditions at any of four NYU Langone hospitals in New York City and Long Island between March 10 and May 20, when coronavirus infections were at their peak in the region.  Frontera says that ahead of the pandemic, dozens of NYU Langone neurologists and trainees had deployed across its medical centers to assist with the expectant surge of COVID-19 patients.  Early reports from Asia and Europe, where infections had spiked before rising in the United States, she says, had also “raised the alarm” about possible brain damage from coronavirus infection. Because of this, the research team was ready to look for any signs of neurological dysfunction among the thousands of patients being admitted to hospital in the spring. Among all the hospitals, 4,491 patients tested positive for COVID-19 during that time.  Among the study’s other key results was that common neurological problems, such as confusion caused by chemical electrolyte imbalances, severe infection or kidney failure, usually arose within 48 hours of developing general COVID-19 symptoms, including fever, difficulty breathing, and cough.  Half of those neurologically affected were over the age of 71, which researchers say is significantly older than the other 3,885 patients with COVID-19 (at a media age of 63) who did not experience brain dysfunction. Most were men (66 percent) and white (63 percent). Frontera notes that the study results do suggest that Blacks are not at greater risk of neurological complications than other COVID-19 patients, which is “welcome news,” given that Blacks are widely known to be at greater risk of death from coronavirus infection. However, she says this potentially important observation requires further investigation. While the coronavirus is known to attack other organs, including blood vessels and the heart, researchers say its main target is the lungs, where it makes breathing difficult, starving the body of oxygen it needs to stay alive. Low levels of oxygen in the body and brain was another common neurological problem, study results showed, that could lead to confusion, coma, or permanent brain damage. “Our study results suggest that physicians need to be more aggressive in stabilizing body oxygen levels in patients with COVID-19 as a potentially key therapy for stopping, preventing and/or possibly reversing neurological problems,” says study senior investigator Steven Galetta, MD. Galetta, the Philip K. Moskowitz, MD Professor and chair of the Department of Neurology at NYU Langone, says various blood-oxygen-raising therapies that could possibly work against neurological problems in patients with COVID-19 include early intubation or use of heart-lung machines, called ECMO, which mechanically “clean” the blood and “deliver” oxygen into it. Funding support for the study was provided by National Institutes of Health grant P30 AG066512 and NYU Langone. Besides Frontera and Galetta, other NYU Langone researchers involved in this study are Sakinah Sabadia, MD; Rebecca Lalchlan, DO; Taolin Fang, MD; Brent Flusty, DO; Patricio Millar-Vernetti, MD; Thomas Snyder, MD; Stephen Berger, MD; Dixon Yang, MD; Andre Granger, MD; Nicole Morgan, MD; Palek Patel, MD; Josef Gutman, MD; Kara Melmed, MD; Shashank Agarwal, MD; Mathew Bokhari, MD; Kaitlyn Lillemoe, MD; Daniel Friedman, MD; David Friedman, MD; Manisha Holmes, MD; Joshua Huang, MSc; Sujata Thawani, MD; Jonathan Howard, MD; Nada Abou-Fayssal, MD; Penina Krieger, MPhil; Ariane Lewis, MD: Aaron Lord, MD; Ting Zhou, MD; D. Ethan Kahn, DO; Barry Czeisler, MD; Jose Torres, MD; Shadi Yaghi, MD; Koto Ishida, MD; Erica Scher, RN, MPH; Dimitris Placatonakis, MD, PhD; Mengling Liu, PhD; Thomas Wisniewski, MD; Andrea Troxel, ScD; and Laura Balcer, MD, MSCE. Other study co-investigators are Sherry Chou, MD, MSc; and Ericka Fink, MD, at the University of Pittsburgh; Molly McNett, RN; and Shraddha Mainali, MD, at Ohio State University in Columbus; Raimund Helbok, MD, PhD, at the Medical University of Innsbruck in Austria; Courtney Robinson, MD; Jose Suarez, MD; and Wendy Ziai, MD, at Johns Hopkins University in Baltimore, Md.; Michelle Schober, MD; and Adam de Havenon, MD, at the University of Utah in Salt Lake City; and David Menon, MD, PhD, at the University of Cambridge in the United Kingdom.
Newswise — PITTSBURGH, Oct. 12, 2020 – Variations in a gene that regulates dopamine levels in the brain may influence the mobility of elderly and frail adults, according to new research from the University of Pittsburgh Graduate School of Public Health.  These results, published today in the Journal of The American Geriatrics Society, add to a growing body of evidence hinting that lower dopamine levels could contribute to the slower, often disabling walking patterns seen in some elderly populations.  “Most people think about dopamine’s role in mobility in the context of Parkinson’s disease, but not in normal aging,” said senior author Caterina Rosano, M.D., M.P.H., professor of epidemiology at Pitt Public Health. “We were curious to see if a genetic predisposition to produce more or less dopamine was related to mobility in individuals who had some level of frailty, yet did not have dementia, parkinsonism or any other neurological condition.”  While several genetic elements control dopamine signaling, Rosano and her team focused on a gene called COMT, which breaks down dopamine to control its levels within the brain. They also considered the frailty status of participants, which is a common consequence of aging marked by a decline in physiological function, poor adjustment to stressors and a susceptibility toward adverse health outcomes. The researchers suspected that frail participants could be particularly vulnerable to COMT-driven differences in dopamine levels.  Rosano and her collaborators examined this gene in more than 500 adults above the age of 65 in Pennsylvania, North Carolina, California and Maryland, excluding any participants taking dopamine-related medications or diagnosed with Parkinson’s disease. The researchers then looked for potential links between genotype, frailty and speed.  “We found that in older, frail adults, those who have a high-dopamine genotype are more likely to maintain a faster gait and may be more resilient to mobility disablement as they age,” said Rosano.  The team discovered that frail participants with a high-dopamine COMT genotype had a 10% faster walking speed compared with participants with the low-dopamine COMT genotype.  “This 10% difference may seem small, but it could make a big difference for a person walking across a busy street while negotiating traffic,” said Rosano. “This difference is even more striking when you consider just how many complex genes influence walking.”  Rosano and study co-author Nicolaas Bohnen, M.D., Ph.D., professor of neurology and radiology at the University of Michigan School of Medicine, are working with a team of scientists at Pitt to quantify what level of dopamine could give elders greater resilience to gait-slowing and mobility disablement. Their hope is that older adults with low dopamine levels could one day receive pharmacologic supplements of dopamine to help preserve their mobility.  “There are a lot of individuals living in the community who have dopamine levels toward the lower end of normal who don't have Parkinson's disease or psychiatric conditions,” said Rosano. “If we give dopamine to these people, could we make them more resilient? That's what we don't know yet.”  In the meantime, she suggests that there are actions that seniors can take today to keep moving. She recommends that elders focus on physical activities that are enjoyable and involve both the body and the brain, especially multi-sensory activities, such as dancing or walking with a loved one.  “I love to see grandparents walking around holding hands with their grandchildren because they have to look where they are going, where the child is going, keep an eye on the surroundings and pay attention to what the grandchild is saying, all at the same time,” said Rosano. “They get an amazing multi-sensory rehab, and it's fantastic.”  Additional authors on this research include first author Shannon Mance, B.S.N., R.N., Andrea Rosso, M.P.H., Ph.D., and Stephanie Studenski, M.D., M.P.H., all of Pitt; and Joshua Bis, Ph.D., of the University of Washington.  This research was supported by the National Institutes of Health (NIH) contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086 and NIH grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, U01HL130114, R01AG023629, and DK063491. Additional support was provided by UCLA Clinical Translational Science Institute grant UL1TR00181.    CREDIT: Ric Evans/Pitt CAPTION: Caterina Rosano, M.D., M.P.H., professor of epidemiology, University of Pittsburgh Graduate School of Public Health.
Newswise — Rockville, Md. (October 6, 2020)—Researchers have used “omics” data containing genetic profiles of drugs to identify the hormone oxytocin as a possible treatment for COVID-19, the disease caused by the novel coronavirus (SARS-CoV-2). The study is published in Physiological Genomics. It was chosen as an APSselect article for October. Increased inflammation that leads to a “cytokine storm”—in which the body attacks its own tissues—remains one of the most serious and least understood complications of COVID-19. To date, there are no medications approved by the U.S. Food and Drug Administration to treat COVID-19, which means that “repurposing existing drugs that can act on the adaptive immune response and prevent the cytokine storm in early phases of the disease is a priority,” authors of a new study wrote. Oxytocin, a hormone produced in the brain, is involved in reproduction and childbirth. A synthetic form of oxytocin, frequently known by its brand name Pitocin, is given by an IV to some people to help labor progress and to stop bleeding after childbirth. Oxytocin also has anti-inflammatory properties, which promote an immune response. Previous research suggests the hormone protects against toxic injury and reduces levels of inflammatory substances in the lungs. Studies have also shown that cultured human cells with reduced expression of oxytocin receptors have higher levels of inflammatory proteins and oxidative stress. The researchers of the new study used the National Institutes of Health’s Library of Integrated Network-Based Cellular Signatures database to analyze characteristics of genes that have been treated with drugs closely related to oxytocin. They found one drug in particular, carbetocin, has similar characteristics (called a signature) to genes with reduced expression of the inflammatory markers that trigger cytokine storm in people with COVID-19. Carbetocin’s signature indicates that the drug may promote the activation of T cells, which are immune cells that play an important role in immune response. Carbetocin’s signature is also similar to that of lopinavir, an antiretroviral medication already being explored as a treatment for COVID-19. All of these factors point to the promising potential of oxytocin as a targeted treatment for coronavirus-related cytokine storms. “Understanding the mechanisms by which [oxytocin] or the [oxytocin system] can be a new immune target is crucial,” the research team wrote. However, “safety and efficacy of intravenous oxytocin in hospitalized patients with COVID-19 remains to be assessed.” Read the full article, “Oxytocin’s anti-inflammatory and proimmune functions in COVID-19: a transcriptomic signature-based approach,” published in Physiological Genomics. It is highlighted as one of this month’s “best of the best” as part of the American Physiological Society’s APSselect program. Read all of this month’s selected research articles. NOTE TO JOURNALISTS: To schedule an interview with a member of the research team, please contact the APS Communications Office or call 301.634.7314. Find more research highlights in our Newsroom. Physiology is a broad area of scientific inquiry that focuses on how molecules, cells, tissues and organs function in health and disease. The American Physiological Society connects a global, multidisciplinary community of more than 10,000 biomedical scientists and educators as part of its mission to advance scientific discovery, understand life and improve health. The Society drives collaboration and spotlights scientific discoveries through its 16 scholarly journals and programming that support researchers and educators in their work.
UCLA Fielding School of Public Health faculty co-led study that found at least 10 distinct “hotspot” mutations in more than 80% of samples of the viruses’ genomes   Newswise — LOS ANGELES (Sept. 29, 2020) – Researchers have found at least 10 distinct “hotspot” mutations in more than 80% of randomly selected SAR-CoV-2 sequences from six countries, and these genome hotspots – seen as "typos" that can occur as the virus replicates during cellular division – could have a significant impact in the fight against the COVID-19 pandemic. “These hotspots might select for more pathogenic variants,” said Christina Ramirez, UCLA Fielding School of Public Health professor of biostatistics, a co-author of the study. “Alternatively, mutations might evolve and could prove to be less pathogenic – the virus, after all, only survives when the host survives.” The speed at which novel SARS-CoV-2 mutants are selected and dispersed around the world may also pose issues for the development of vaccines and therapeutics, according to the study in the journal Virus Research, co-authored by Ramirez and colleagues Stefanie Weber and Walter Doerfler, both of the Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU), Erlangen, Germany. “One of the major scientific problems confronted with by the SARS-CoV-2 pandemic lies in our limited understanding of the interactions between the viral and the human host genomes and the latter’s defense mechanisms against this pathogen,” said Doerfler, a physician and molecular geneticist.  “The results of our study will provide a platform for those who take care of patients with infections.” RESEARCH BRIEF FINDINGS During worldwide spreading among human populations, at least 10 distinct hotspot mutations had been selected and found in up to more than 80% of the randomly selected sequences from 6 countries. The increasing frequency of SARS-CoV-2 mutation hotspots might select for dangerous viral pathogens. Alternatively, there might be a limit to the number of mutable and selectable sites which, when exhausted, could prove disadvantageous to viral survival. The speed, at which novel SARS-CoV-2 mutants are selected and dispersed around the world, could have implications for the development of vaccines and therapeutics, according to a new study co-authored by Christina Ramirez, UCLA Fielding School of Public Health professor of biostatistics, and colleagues. BACKGROUND Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was first identified in Wuhan, China late in 2019. Nine months later (Sept. 23, 2020), the virus has infected almost 32 million people around the world and caused at least 971,000 (3.07 %) fatalities in 220 countries and territories. Research on the genetics of the SARS-CoV-2 genome, its mutants, and their penetrance, can aid future defense strategies. METHOD By analyzing sequence data deposited between December 2019 and end of May 2020, researchers compared nucleotide sequences of 570 SARS-CoV-2 genomes from China, Europe, the United States, and India to the sequence of the Wuhan isolate. IMPACT It will now be important to correlate the identified hotspot mutations with the course and outcome of individual infections in humans. This demanding problem has not yet been tackled. Hopefully, the results of our study will provide a platform for those in SARS-CoV-2 research who take care of patients with SARS-CoV-2 infections. SARS-CoV-2 has the ability to mutate and, in its course of dissemination around the world, to select for distinct signal hotspot mutations depending on high rates of genome replication and complex environmental and genetic conditions in newly invaded territories. During its intercontinental journey, the exposure of SARS-CoV-2 to the 21st century’s repertoire of medical resources may have been an additional selective force. The impact of an increase in hotspot SARS-CoV-2 mutations on immunogenesis and the prospects for vaccine development might be experienced and will have to be examined in the future. AUTHORS Study authors are Stefanie Weber, Christina Ramirez, and Walter Doerfler JOURNAL The study is published as “Signal hotspot mutations in SARS-CoV-2 genomes evolve as the virus spreads and actively replicates in different parts of the world” in the November, 2020 edition of the peer-reviewed journal Virus Research, FUNDING This work was conducted under the auspices of the UCLA Fielding School of Public Health; initiation of this project was undertaken by Stefanie Weber and Walter Doerfler both at the Institute for Clinical and Molecular Virology at Friedrich Alexander University (FAU) in Erlangen-Nürnberg. No external funding was provided. The UCLA Fielding School of Public Health, founded in 1961, is dedicated to enhancing the public's health by conducting innovative research, training future leaders and health professionals from diverse backgrounds, translating research into policy and practice, and serving our local communities and the communities of the nation and the world. The school has 690 students from 25 nations engaged in carrying out the vision of building healthy futures in greater Los Angeles, California, the nation and the world.
Newswise — Testing self-collected saliva samples could offer an easy and effective mass testing approach for detecting asymptomatic COVID-19. Scientists at Hokkaido University and colleagues in Japan have demonstrated a quick and effective mass testing approach using saliva samples to detect individuals who have been infected with COVID-19 but are still not showing symptoms. Their findings were published in the journal Clinical Infectious Diseases. "Rapid detection of asymptomatic infected individuals will be critical for preventing COVID-19 outbreaks within communities and hospitals," says Hokkaido University researcher Takanori Teshima, who led the study. Many of the world's governments are showing reluctance to re-institute full national lockdowns as second waves of COVID-19 infections loom on the horizon. Testing and tracing systems will need to be ramped up in order to detect and isolate people who have the virus as early as possible. Teshima and colleagues tested and compared the nasopharyngeal swabs and saliva samples of almost 2,000 people in Japan who did not have COVID-19 symptoms. Two different virus amplification tests were performed on most of the samples: the PCR test, which is now well-known and widely available around the world, and the less commonly used but faster and more portable RT-LAMP test. The number of positive and negative results in all samples was very similar, with the nasopharyngeal swabs and saliva samples able to detect those with the infection in 77-93% and 83-97% of subjects, respectively. Both two tests were also able to identify those without the infection in greater than 99.9% of subjects. The virus loads detected in nasopharyngeal swab and saliva were equivalent and highly correlated. Teshima says, "PCR sensitivity is much higher than previously thought 70% that came from initial data of symptomatic patients." While finding both nasopharyngeal and saliva samples have high sensitivity and specificity to the SARS-CoV-2, Teshima says "Saliva testing has significant logistic advantages over the commonly used nasopharyngeal swab testing." "Self-collection of saliva is painless for examinees, and more importantly, it eliminates the close contact with the examiners, reducing the risk of viral exposure." "We also found that it is unlikely that the sensitivity of RT-LAMP is significantly less than that of the PCR test, suggesting that it might be a useful alternative for diagnosing COVID-19 infection, especially where diagnosis is required at the point of sample collection, like in sports venues or at airports," says Teshima. Researchers point to a limitation of the study that they did not follow up with clinical outcomes. Nonetheless, they suggest that the results give good indication that mass screening using self-collected saliva and rapid RT-LAMP testing could provide easy, non-invasive, quick and relatively accurate results, with minimal risk of viral transmission to healthcare workers.   Image Credit: Isao Yokota et al., Clinical Infectious Diseases, September 25, 2020 Both nasopharyngeal swab (NPS) and saliva testing showed high sensitivity and specificity to the SARS-CoV-2. (Isao Yokota et al., Clinical Infectious Diseases, September 25, 2020)
Newswise — From Weight Watchers to wearable tech – wherever we look, there are messages encouraging us to stay fit and healthy. But diets and training methods aside, when it comes to heart health, research from the University of South Australia shows that a far more personalised approach is needed…and it all starts with your genes. Conducted in partnership with the University of New England and the University of Queensland, the study assessed the impact of lifestyle factors on cardiovascular disease (CVD), finding clear links between genetic predisposition of CVD and smoking, alcohol intake, physical activity and diet. UniSA researcher, Associate Professor Hong Lee, leader of the statistical genetics group at the Australian Centre for Precision Health, says the popular ‘one-size-fits-all’ approach to heart health does not have uniform effects, and that a tailored, individualised approach to CVD is essential. Globally, CVD is the number one cause of death, claiming an estimated 17.9 million lives a year. Most deaths are due to heart attacks and strokes, with a third of these occurring prematurely in people under 70 years of age. In Australia, heart disease kills one Australian every four minutes. “Every day, we’re exposed to information that promotes positive lifestyle factors for better health. But what we don’t hear, is how individual genetic differences can negate positive effects, often to detriment of the individual,” Assoc Prof Lee says. “Between 20 to 60 per cent of risk factors for CVD are attributed to genetics which are far better addressed through personalised and individual interventions than broad-stroke lifestyle adjustments. “For example, genetics show how the level of your cholesterol can be controlled by a lifestyle modification, given your genotypes and the underlying genetic link between cholesterol and lifestyle factors. “This will help you make a decision about which lifestyle intervention is most suitable for you, for example, more exercise might be a better choice than reducing smoking. “However, this does not necessary mean that exercise is uniformly recommended for other people who may have different genes and genetic effects that are more sensitive to smoking exposure.     “It’s all about understanding how individual genetic risks can change in line with different lifestyle adjustments, and consequently how cardiovascular health can benefit.” Using a novel whole-genome approach, researchers analysed 23 cardiovascular health-related traits and 22 lifestyle characteristics using the ARIC (Atherosclerosis Risk in Communities) Study (N=8291) and validating results via the UK Biobank (N~500,000). 34 significant CVD trait-lifestyle pairs were identified. While Assoc Prof Lee agrees that positive lifestyle changes are good for overall health, including cardiovascular health, he says tailored interventions based on individual differences will be most successful for managing CVD. “As precision health practices advance, we are likely to see more personalised health treatments that are based on individual genetic profiles,” Assoc Prof Lee says. “We are currently in the process of developing tools that can predict genetic risk based on genotypes and how lifestyle changes can modulate these. “Incorporating individual (genetic) differences into CVD interventions will absolutely increase the predictive power of lifestyle changes on individual health.”
SAN MARCOS, TX – R-Water announces Gary Rizzato has joined the company as Chief Operating Officer (COO). In his new role, Gary will draw from experiences within the healthcare industry where he managed expansion and build out projects surpassing $1 billion and oversaw facilities totaling more than 2.5 million square feet. He will closely collaborate with CEO Rayne Guest to ensure the company's rapid growth stays aligned with the founding values and culture. “I’ve been impressed with Gary since we met in 2015,” said Rayne Guest, founder and CEO of R-Water. “Gary’s commitment to quality care, operational efficiency, and customer service make him a perfect fit for our team.” Gary Rizzato has over a decade of experience working in healthcare facility management and support services. Most recently, he served as Vice President for the Government Division of HHS, a company serving more than 600 partner organizations in the fields of healthcare, resorts, senior living, government, aviation, and education. Gary also assisted in starting up and managing the HHS Integrated Facilities Management service line, serving in the role of Vice President of Integrated Facilities Management. Gary began his career working for healthcare systems, such as Tenet Health, Baton Rouge General Medical Center, and CHI St. Joseph Health. His various roles included Director of Facility Management, Property Manager, and Project Manager. “I am proud to join R-Water, said Gary Rizzato. “The mission of the company is one I whole-heartedly believe in and look forward to using my expertise to spread the positive impact it is making in the cleaning industry even further.” Gary received his bachelor’s degree in Environmental Design from Texas A&M University and his Master of Science in Engineering Science from Louisiana State University. He is a national design member with the American Institute of Architects (AIA), Certified Healthcare Facilities Manager (CHFM), Certified Healthcare Fire Safety Professional (CHFSP), Certified Healthcare Safety Professional (CHSP), Registered Environmental Services Executive (RESE), and possesses health and safety certifications OSHA 30 and EM 385-1-1. About R-Water R-Water is a woman-owned business based in San Marcos, Texas. R-Water’s computerized device gives hospitals, hotels, cruise ships, office buildings, restaurants, schools, and other facilities the power to produce cutting-edge cleaning and disinfecting solutions on-site. To learn more about how you can protect yourself against the threat of COVID-19, visit www.r-water.com or contact info@r-water.com.
Newswise — In a paper published in the Journal on Active Aging, University of Illinois Chicago longevity researcher S. Jay Olshansky and his colleagues conclude that both 2020 presidential candidates — former Vice President Joe Biden, 77, and President Donald Trump, 74 — are likely to maintain their health beyond the end of the next presidential term.  As a result, they say that chronological age and fitness should not be factors in the 2020 election. “It is our conclusion that chronological age is not a relevant factor for either candidate running for President of the United States,” the authors write. “Both candidates face a lower than average risk of experiencing significant health or cognitive functioning challenges during the next four years.”  To evaluate each candidate’s likelihood of surviving a four-year term in office, the researchers scientifically evaluated the candidates’ health status based on publicly available medical records and confirmed publicly available personal information. The medical records of each candidate were independently evaluated by three medical doctors with experience in aging and a team of research scientists with expertise in epidemiology, public health, survival analysis, and statistics.  This is the first time that the medical records and personal attributes of presidential candidates have been scientifically evaluated by physicians and scientists in the field of aging. The key findings of the study: Biden and Trump are likely to be “super-agers,” a subgroup of people that maintain their mental and physical functioning and tend to live longer than the average person their age. Both candidates have a higher than average probability of surviving a four-year term in office, relative to other men their age. For Biden, the probability of surviving the next four years is 95.2% (vs. 82.2%). For Trump, this is 90.3% (vs. 86.2%). Biden is expected to outlive Trump, even though he is three years older. In the paper, the researchers note Biden’s “nearly perfect health profile for a man his age,” compared with Trump’s “significant but modifiable” risk factors. While Trump is noted to have an elevated familial risk of late-onset Alzheimer’s disease, neither candidate is expected to have major cognitive functioning challenges now or during the next four years. Olshansky, the corresponding author of the study, says the results are evidence that age does not matter in this historic election in which the next elected president will be the oldest in American history. “We see chronological age as a topic of discussion time and again during elections, even though scientific and medical evidence tells us that biological age is far more important,” said Olshansky, professor of epidemiology and biostatics at the UIC School of Public Health. Biological age is reflective of how rapidly a body is growing old — this occurs at different rates, Olshansky said. “Biological age is influenced by genetics and behavioral risk factors. Some people can be biologically old at age 50 while others can be biologically young at age 80.” In prior research, Olshansky conducted the first scientific evaluation of presidential longevity; he sought to understand if being President causes an individual to age more rapidly and die sooner than expected. In that study, Olshansky concluded that most U.S. presidents actually live beyond the average life expectancy. The new study is the first to evaluate individuals, before they are elected. “Despite the science, the candidates themselves and their campaigns are still trying to weaponize age,” Olshansky said. “This is certainly the case for both campaigns in 2020. Comments from Biden implying that Trump is ‘mentally deranged’ and Trump’s references to Biden as ‘Sleepy Joe’ suggest that their opponents are too old, are unfit, or are otherwise unable to do the job, based on their age. It’s ageism, pure and simple.” Tolerance of ageism, Olshansky says, harms everyone. “We live in an aging society, and it’s important that we value, respect and continue to have a place in our culture for people of all ages. No one should be discounted from any position, even the presidency, based on their age,” Olshansky said.  Olshansky thinks that the public would be better served if age was diffused as a factor in elections rather than weaponized, and he’s seen other candidates refuse to contribute to an ageist narrative. “Ronald Regan did this in the 80s and Pete Buttigieg did it last year. Age should not be a topic in 2020,” Olshansky said. In 1984, Ronald Regan, then age 73, when asked about his advanced age, said “I want you to know that also I will not make age an issue of this campaign. I am not going to exploit, for political purposes, my opponent’s youth and inexperience.” Similarly, when asked about his relative youth, Sound Bend, Indiana Mayor Pete Buttigieg, who ran in the 2019 democratic presidential primary, then age 37, deflected the question. “Mayor Buttigieg said it’s the age of the ideas that matter, not the candidate — and I think that was right, too,” Olshansky said. “We can acknowledge age in an election, but all ages should be valued for the diverse perspectives and experience they bring.” Co-authors on the paper are Hiram Beltrán-Sánchez of the University of California, Los Angeles; Yang Claire Yang of the University of North Carolina at Chapel Hill; Yi Li of the University of Macao; Dr. Nir Barzilai of the Albert Einstein College of Medicine; Dr. Paola Rode of Lapetus Solutions; and Dr. Bradley Willcox of the University of Hawaii.